Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875478

ABSTRACT

USP25 encodes ubiquitin-specific proteases 25, a key member of deubiquitinating enzyme family and is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown etiology. Five heterozygous USP25 variants including two de novo and three co-segregated variants were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared to the East Asian population and all populations in the gnomAD database. The mean onset ages of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom except one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was ubiquitously expressed in mouse brain with two peaks on embryonic days (E14‒E16) and postnatal day 21, respectively. Similarly, USP25 expressed in fetus/early childhood stage with a second peak at approximately 12‒20 years old in human brain, consistent with the seizure onset age at infancy and juvenile in the patients. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knock-out mice, which showed increased seizure susceptibility compared to wild-type mice in pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we employed multiple functional detections. In HEK293T cells, the severe phenotype associated variant (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed a stable truncated dimers with increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del increased neuronal excitability in mice brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.

2.
Mol Neurobiol ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520610

ABSTRACT

NUS1 encodes the Nogo-B receptor, a critical regulator for unfolded protein reaction (UPR) signaling. Although several loss-of-function variants of NUS1 have been identified in patients with developmental and epileptic encephalopathy (DEE), the role of the NUS1 variant in Lennox-Gastaut syndrome (LGS), a severe child-onset DEE, remains unknown. In this study, we identified two de novo variants of NUS1, a missense variant (c.868 C > T/p.R290C) and a splice site variant (c.792-2 A > G), in two unrelated LGS patients using trio-based whole-exome sequencing performed in a cohort of 165 LGS patients. Both variants were absent in the gnomAD population and showed a significantly higher observed number of variants than expected genome-wide. The R290C variant was predicted to damage NUS1 and decrease its protein stability. The c.792-2 A > G variant caused premature termination of the protein. Knockdown of NUS1 activated the UPR pathway, resulting in apoptosis of HEK293T cells. Supplementing cells with expression of wild-type NUS1, but not the mutant (R290C), rescued UPR activation and apoptosis in NUS1 knockdown cells. Compared to wild-type Drosophila, seizure-like behaviors and excitability in projection neurons were significantly increased in Tango14 (homolog of human NUS1) knockdown and Tango14R290C/+ knock-in Drosophila. Additionally, abnormal development and a small body size were observed in both mutants. Activated UPR signaling was also detected in both mutants. Thus, NUS1 is a causative gene for LGS with dominant inheritance. The pathogenicity of these variants is related to the UPR signaling activation, which may be a common pathogenic mechanism of DEE.

3.
Seizure ; 116: 93-99, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37643945

ABSTRACT

OBJECTIVES: Variants in NEXMIF had been reported associated with intellectual disability (ID) without epilepsy or developmental epileptic encephalopathy (DEE). It is unkown whether NEXMIF variants are associated with epilepsy without ID. This study aims to explore the phenotypic spectrum of NEXMIF and the genotype-phenotype correlations. MATERIALS AND METHODS: Trio-based whole-exome sequencing was performed in patients with epilepsy. Previously reported NEXMIF variants were systematically reviewed to analyze the genotype-phenotype correlations. RESULTS: Six variants were identified in seven unrelated cases with epilepsy, including two de novo null variants and four hemizygous missense variants. The two de novo variants were absent in all populations of gnomAD and four hemizygous missense variants were absent in male controls of gnomAD. The two patients with de novo null variants exhibited severe developmental epileptic encephalopathy. While, the patients with hemizygous missense variants had mild focal epilepsy with favorable outcome. Analysis of previously reported cases revealed that males with missense variants presented significantly higher percentage of normal intellectual development and later onset age of seizure than those with null variants, indicating a genotype-phenotype correlation. CONCLUSION: This study suggested that NEXMIF variants were potentially associated with pure epilepsy with or without intellectual disability. The spectrum of epileptic phenotypes ranged from the mild epilepsy to severe developmental epileptic encephalopathy, where the epileptic phenotypes variability are potentially associated with patients' gender and variant type.


Subject(s)
Epilepsy, Generalized , Epilepsy , Intellectual Disability , Humans , Male , Intellectual Disability/complications , Intellectual Disability/genetics , Epilepsy/complications , Epilepsy/genetics , Seizures/complications , Epilepsy, Generalized/complications , Epilepsy, Generalized/genetics , Phenotype
4.
Front Aging Neurosci ; 14: 848919, 2022.
Article in English | MEDLINE | ID: mdl-35462688

ABSTRACT

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare genetic disorder caused by mutations in the mitochondrial pantothenate kinase 2 (PANK2) gene and displays an inherited autosomal recessive pattern. In this study, we identified eight PANK2 mutations, including three novel mutations (c.1103A > G/p.D368G, c.1696C > G/p.L566V, and c.1470delC/p.R490fs494X), in seven unrelated families with PKAN. All the patients showed an eye-of-the-tiger sign on the MRI, six of seven patients had dystonia, and two of seven patients had Parkinsonism. Biallelic mutations of PANK2 decreased PANK2 protein expression and reduced mitochondrial membrane potential in human embryonic kidney (HEK) 293T cells. The biallelic mutations from patients with early-onset PKAN, a severity phenotype, showed decreased mitochondrial membrane potential more than that from late-onset patients. We systematically reviewed all the reported patients with PKAN with PANK2 mutations. The results indicated that the early-onset patients carried a significantly higher frequency of biallelic loss-of-function (LoF) mutations compared to late-onset patients. In general, patients with LoF mutations showed more severe phenotypes, including earlier onset age and loss of gait. Although there was no significant difference in the frequency of biallelic missense mutations between the early-onset and late-onset patients, we found that patients with missense mutations in the mitochondrial trafficking domain (transit peptide/mitochondrial domain) of PANK2 exhibited the earliest onset age when compared to patients with mutations in the other two domains. Taken together, this study reports three novel mutations and indicates a correlation between the phenotype and mitochondrial dysfunction. This provides new insight for evaluating the clinical severity of patients based on the degree of mitochondrial dysfunction and suggests genetic counseling not just generalized identification of mutated PANK2 in clinics.

5.
Front Pharmacol ; 12: 671572, 2021.
Article in English | MEDLINE | ID: mdl-34122097

ABSTRACT

To characterize human leukocyte antigen (HLA) loci as risk factors in aromatic antiepileptic drug-induced maculopapular exanthema (AED-MPE). A case-control study was performed to investigate HLA loci involved in AED-MPE in a southern Han Chinese population. Between January 2007 and June 2019, 267 patients with carbamazepine (CBZ), oxcarbazepine (OXC), or lamotrigine (LTG) associated MPE and 387 matched drug-tolerant controls from six centers were enrolled. HLA-A/B/C/DRB1 genotypes were determined using sequence-based typing. Potential risk alleles were validated by meta-analysis using data from different populations and in silico analysis of protein-drug interactions. HLA-DRB1*04:06 was significantly associated with OXC-MPE (p = 0.002, p c = 0.04). HLA-B*38:02 was associated with CBZ-MPE (p = 0.03). When pooled, HLA-A*24:02, HLA-A*30:01, and HLA-B*35:01 additionally revealed significant association with AED-MPE. Logistic regression analysis showed a multiplicative interaction between HLA-A*24:02 and HLA-B*38:02 in CBZ-MPE. Meta-analysis of data from different populations revealed that HLA-24*:02 and HLA-A*30:01 were associated with AED-MPE (p = 0.02 and p = 0.04, respectively). In silico analysis of protein-drug interaction demonstrated that HLA-A*24:02 and HLA-A*30:01 had higher affinities with the three aromatic AEDs than the risk-free HLA-A allele. HLA-DRB1*04:06 showed relatively specific high affinity with S-monohydroxy derivative of OXC. HLA-DRB1*04:06 is a specific risk allele for OXC-induced MPE in the Southern Han Chinese. HLA-A*24:02, possibly HLA-A*30:01, are common risk factors for AED-MPE. The multiplicative risk potential between HLA-A*24:02 and HLA-B*38:02 suggests that patients with two risk alleles are at greater risk than those with one risk allele. Inclusion of these HLA alleles in pre-treatment screening would help estimating the risk of AED-MPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...