Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Otorhinolaryngol ; 90(4): 101411, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38663041

ABSTRACT

OBJECTIVES: The role of Epoxide Hydrolase-4 (EPHX4), a member of epoxide hydrolase family, has not been investigated in cancer. The purpose of this article is to explore the application value of EPHX4 in laryngeal cancer and its relationship with immune infiltration. METHODS: We observed that EPHX4 expression and its survival assays in laryngeal cancer specimens based on The Cancer Genome Atlas (TCGA) cohorts. We also analyzed the correlation between immune cell infiltration levels and EPHX4 gene copy number in laryngeal cancer. Finally, we conducted in vitro assay to evaluate the functions of EPHX4 in laryngeal cancer cell line. RESULTS: EPHX4 is highly expressed in laryngeal cancer specimens and has a poor prognosis. EPHX4 related immune cell analysis showed that it participated in NK Natural killer cell mediated cytotoxicity. Finally, Cell experiments indicate that EPHX4 could promote laryngeal cancer cell line proliferation, colony formation and invasion. CONCLUSIONS: Our research results suggest that EPHX4 may be a potential immunotherapy target for laryngeal cancer. The nominated immune signature is a helpful and promising prognostic indicator in laryngeal cancer. LEVELS OF EVIDENCE: Level 3.

2.
Cells ; 11(21)2022 11 05.
Article in English | MEDLINE | ID: mdl-36359902

ABSTRACT

This study aimed to explore the role of LncKCNQ1OT1/hsa-miR-153-3p/RUNX2 in the odontoblastic differentiation of human dental pulp stem cells (DPSCs) and its possible mechanism. The expression of LncKCNQ1OT1, hsa-miR-153-3p, and RUNX2 in the odontoblastic differentiation was detected by qRT-PCR. Interaction between LncKCNQ1OT1 and hsa-miR-153-3p and interaction between hsa-miR-153-3p and RUNX2 were detected by dual-luciferase assay. The cell viability of DPSCs was detected by CCK-8, and the effect of LncKCNQ1OT1 and hsa-miR-153-3p on the odontoblastic differentiation of DPSCs was observed by alizarin red staining, alkaline phosphatase (ALP) activity assay, and Western blot for RUNX2, DSPP, and DMP-1. The results showed, during odontoblastic differentiation of DPSCs, the expression of LncKCNQ1OT1 increased, hsa-miR-153-3p expression decreased, and RUNX2 expression increased. Dual-luciferase assay showed that LncKCNQ1OT1 sponges hsa-miR-153-3p and hsa-miR-153-3p targets on RUNX2. After LncKCNQ1OT1 and hsa-miR-153-3p expressions of DPSCs were changed, the cell viability was not notably changed, but the odontoblastic differentiation was notably changed, which was confirmed with Alizarin Red staining, ALP activity, and Western blot for RUNX2, DSPP, and DMP-1. The results indicate that LncKCNQ1OT1 promotes the odontoblastic differentiation of DPSCs via regulating hsa-miR-153-3p/RUNX2 axis, which may provide a therapeutic clue for odontogenesis.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Dental Pulp , Humans , Cell Differentiation/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dental Pulp/metabolism , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...