Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Ecotoxicol Environ Saf ; 281: 116563, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878560

ABSTRACT

Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.


Subject(s)
Apoptosis , Calcium , Evodia , Homeostasis , Kidney , Quinazolines , Quinazolines/toxicity , Quinazolines/pharmacology , Animals , Homeostasis/drug effects , Calcium/metabolism , Mice , Apoptosis/drug effects , Kidney/drug effects , Kidney/pathology , Evodia/chemistry , Male , TRPV Cation Channels/metabolism , Calcium Chelating Agents/pharmacology
2.
J Ethnopharmacol ; 326: 117967, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431111

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (PF), the dried fruit of Psoralea corylifolia L., is a commonly used traditional medicine that has contributed to the treatment of orthopedic diseases for thousands of years in China. However, recent PF-related liver injury reports have drawn widespread attention regarding its potential hepatotoxicity risks. AIM OF THE STUDY: This study was aimed to evaluate the long-term efficacy and chronic toxicity of PF using a 26-week administration experiment on rats in order to simulate the clinical usage situation. MATERIALS AND METHODS: The PF aqueous extract was consecutively administrated to rats daily at dosages of 0.7, 2.0, and 5.6 g/kg (equivalent to 1-8 times the clinical doses for humans) for as long as 26 weeks. Samples were collected after 13, 26, and 32 weeks (withdrawal for 6 weeks) since the first administration. The chronic toxicity of PF was evaluated by conventional toxicological methods, and the efficacy of PF was evaluated by osteogenic effects in the natural growth process. RESULTS: In our experiments, only the H group (5.6 g/kg) for 26-week PF treatment demonstrated liver or kidney injury, which the injuries were reversible after 6 weeks of withdrawal. Notably, the PF treatment beyond 13 weeks showed significant benefits for bone growth and development in rats, with a higher benefit-risk ratio in female rats. CONCLUSIONS: PF displayed a promising benefit-risk ratio in the treatment and prevention of osteoporosis, a disease that lacks effective medicine so far. This is the first study to elucidate the benefit-risk balance associated with clinical dosage and long-term use of PF, thereby providing valuable insights for rational clinical use and risk control of PF.


Subject(s)
Drugs, Chinese Herbal , Fabaceae , Psoralea , Humans , Rats , Female , Animals , Fruit , Odds Ratio , Liver , Drugs, Chinese Herbal/toxicity
3.
Front Immunol ; 13: 1015182, 2022.
Article in English | MEDLINE | ID: mdl-36483564

ABSTRACT

Adalimumab and secukinumab are commonly used for moderate to severe psoriasis vulgaris (PV). Although distinct individual responses to and impaired effectiveness of these biological agents occur occasionally, little is known about the underlying reasons. Here, we report a proteomic analysis of psoriatic lesions from patients treated with these drugs using data-independent acquisition mass spectrometry (DIA-MS). Thousands of differentially expressed proteins (DEPs) changed over 12 weeks of treatment. Network analysis showed that DEPs could interact and induce transformation in matrix components, metabolic regulation, and immune response. The results of parallel reaction monitoring (PRM) analysis suggested that S100s, STAT1, KRT2, TYMP, SOD2, HSP90AB1, TFRC, and COL5A1 were the most significantly changed proteins in both groups. There was a positive association between the Psoriasis Area and Severity Index (PASI) score and three proteins (TFRC, IMPDH2, KRT2). Our study findings suggest that inhibition of IL-17A and TNF-α can induce changes in multiple molecules in psoriatic lesions and have an overlapping influence on the immune response and process through direct or indirect effects.


Subject(s)
Interleukin-17 , Tumor Necrosis Factor Inhibitors , Humans , Tumor Necrosis Factor-alpha , Proteomics
4.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2721-2728, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718492

ABSTRACT

This study aims to unveil the effect of ophiopogonin D(OPD) on isoproterenol(ISO)-induced apoptosis of rat cardiomyocytes and the possible targets, which is expected to provide clues for further research on the myocardial protection of ophiopogonins. Cell count kit-8(CCK-8) assay was used to detect viability of cells treated with OPD and ISO, Western blot to examine the effect of OPD and ISO on the expression of endoplasmic reticulum stress-related Bip, Bax, Perk, ATF4, caspase-12, and CHOP, flow cytometry to determine cell apoptosis rate, and Hoechst 33258 and Tunel staining to observe cell apoptosis and morphological changes. In addition, the probe for calcium ion-specific detection was employed to investigate calcium ion release from the endoplasmic reticulum, and OPD-bond epoxy-activated agarose solid-phase microspheres were prepared and used as affinity matrix to capture OPD-binding target proteins in H9 c2 cell lysate. For the target proteins of OPD identified by high-resolution mass spectrometry, the related signal pathways were enriched and the potential targets of OPD against cardiomyocyte injury were discussed. The experimental result showed that 10 µmol·L~(-1) ISO can significantly induce the expression of endoplasmic reticulum stress-related proteins and promote cell apoptosis. Different concentration of OPD can prevent the damage of myocardial cells caused by ISO. According to mass spectrometry results, 19 proteins, including Fam129 a and Pdia6, were involved in multiple signaling pathways such as the unfolded protein reaction bound by the ERN1 sensor, tricarboxylic acid cycle, and Nrf2 signal transduction pathway. The above results indicate that OPD protects cardiomyocytes by regulating multiple signaling pathways of target proteins and affecting cell cycle progression.


Subject(s)
Myocytes, Cardiac , Spirostans , Animals , Apoptosis , Calcium/pharmacology , Endoplasmic Reticulum Stress , Isoproterenol/toxicity , Rats , Saponins , Spirostans/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...