Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Free Radic Biol Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830513

ABSTRACT

Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.

2.
Cell Death Dis ; 15(6): 392, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834617

ABSTRACT

Keratinocyte proliferation and differentiation in epidermis are well-controlled and essential for reacting to stimuli such as ultraviolet light. Imbalance between proliferation and differentiation is a characteristic feature of major human skin diseases such as psoriasis and squamous cell carcinoma. However, the effect of keratinocyte metabolism on proliferation and differentiation remains largely elusive. We show here that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) promotes differentiation while inhibits proliferation of keratinocyte and suppresses psoriasis development. FBP1 is identified among the most upregulated genes induced by UVB using transcriptome sequencing and is elevated especially in upper epidermis. Fbp1 heterozygous mice exhibit aberrant epidermis phenotypes with local hyperplasia and dedifferentiation. Loss of FBP1 promotes proliferation and inhibits differentiation of keratinocytes in vitro. Mechanistically, FBP1 loss facilitates glycolysis-mediated acetyl-CoA production, which increases histone H3 acetylation at lysine 9, resulting in enhanced transcription of proliferation genes. We further find that the expression of FBP1 is dramatically reduced in human psoriatic lesions and in skin of mouse imiquimod psoriasis model. Fbp1 deficiency in mice facilitates psoriasis-like skin lesions development through glycolysis and acetyl-CoA production. Collectively, our findings reveal a previously unrecognized role of FBP1 in epidermal homeostasis and provide evidence for FBP1 as a metabolic psoriasis suppressor.


Subject(s)
Cell Differentiation , Cell Proliferation , Fructose-Bisphosphatase , Histones , Keratinocytes , Psoriasis , Animals , Humans , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Disease Models, Animal , Fructose-Bisphosphatase/metabolism , Fructose-Bisphosphatase/genetics , Glycolysis , Histones/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Mice, Inbred C57BL , Psoriasis/pathology , Psoriasis/metabolism , Psoriasis/genetics
3.
Int Immunopharmacol ; 136: 112296, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810310

ABSTRACT

Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 µM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.

4.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622116

ABSTRACT

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Subject(s)
Rho Factor , Transcription Factors , Transcription Factors/metabolism , Virulence/genetics , Rho Factor/genetics , Rho Factor/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic , Bacteria/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
5.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38437887

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Subject(s)
Kidney Diseases , Renal Insufficiency, Chronic , Triterpenes , Ureteral Obstruction , Humans , Mice , Animals , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney , Renal Insufficiency, Chronic/metabolism , Oxidative Stress , Fibrosis , Ureteral Obstruction/metabolism
6.
Phytomedicine ; 128: 155419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522314

ABSTRACT

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Drugs, Chinese Herbal , Hepatic Encephalopathy , Thioacetamide , Wnt Signaling Pathway , Animals , Drugs, Chinese Herbal/pharmacology , Hepatic Encephalopathy/drug therapy , Male , Wnt Signaling Pathway/drug effects , Blood-Brain Barrier/drug effects , Mice , Carbon Tetrachloride , Cell Line , Mice, Inbred C57BL
7.
Heliyon ; 10(3): e24746, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318012

ABSTRACT

Objective: Half of the patients with acute large artery occlusion (LAO) have poor outcomes after endovascular treatment (EVT). Early complications such as cerebral edema and symptomatic intracranial hemorrhage (sICH) can lead to early neurological deterioration (END), which correlates with hemodynamics. This study aimed to identify the hemodynamic predictors of END and outcomes in LAO patients after EVT. Methods: A total of 76 patients with anterior circulation LAO who underwent EVT and received transcranial Doppler (TCD) monitoring were included. Bilateral middle cerebral artery (MCA) blood flow velocities (BFVs) were measured repeatedly within 1 week. Mean flow velocities (MFV) and MFV index (ipsilateral MFV/contralateral MFV) were calculated. The primary outcome was the incidence of END within 72 h. The secondary outcome was the functional outcome at 90 days-a good outcome was defined as a modified Rankin scale (mRS) score of 0-2, while a poor outcome was defined as an mRS score of 3-6. Results: A total of 13 patients (17.1 %) experienced END within 72 h, including 5 (38.5 %) with cerebral edema, 5 (38.5 %) with sICH, and 3 (23.0 %) with infarct progression. Multivariable logistic regression analysis showed that a higher 24 h MFV index was independently associated with END (aOR 10.5; 95 % CI 2.28-48.30, p = 0.003) and a poor 90-day outcome (aOR 5.10; 95 % CI 1.38-18.78, p = 0.014). The area under the receiver operating characteristic (ROC) curve (AUC) of the 24 h MFV index for predicting END was 0.807 (95 % CI 0.700-0.915, p = 0.0005), the sensitivity was 84.6 %, and the specificity was 66.7 %. At the 1-week TCD follow-up, patients who had poor 90-day outcomes showed significantly higher 1-week iMFV [73.5 (58.4-99.0) vs. 57.7 (45.3-76.3), p = 0.004] and MFV index [1.24 (0.98-1.57) vs.1.0 (0.87-1.15) p = 0.007]. A persistent high MFV index (PHMI) was independently associated with a poor outcome (aOR 7.77, 95 % CI 1.81-33.3, p = 0.006). Conclusion: TCD monitoring within 24 h after EVT in LAO patients can help predict END, while dynamic follow-up within 1 week is valuable in predicting clinical outcomes.

8.
J Adv Res ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37926144

ABSTRACT

INTRODUCTION: Accurate identification of pulmonary arterial hypertension (PAH) in primary care and rural areas can be a challenging task. However, recent advancements in computer vision offer the potential for automated systems to detect PAH from echocardiography. OBJECTIVES: Our aim was to develop a precise and efficient diagnostic model for PAH tailored to the unique requirements of intelligent diagnosis, especially in challenging locales like high-altitude regions. METHODS: We proposed the Chamber Attention Network (CAN) for PAH identification from echocardiographic images, trained on a dataset comprising 13,912 individual subjects. A convolutional neural network (CNN) for view classification was used to select the clinically relevant apical four chamber (A4C) and parasternal long axis (PLAX) views for PAH diagnosis. To assess the importance of different heart chambers in PAH diagnosis, we developed a novel Chamber Attention Module. RESULTS: The experimental results demonstrated that: 1) The substantial correspondence between our obtained chamber attention vector and clinical expertise suggested that our model was highly interpretable, potentially uncovering diagnostic insights overlooked by the clinical community. 2) The proposed CAN model exhibited superior image-level accuracy and faster convergence on the internal validation dataset compared to the other four models. Furthermore, our CAN model outperformed the others on the external test dataset, with image-level accuracies of 82.53% and 83.32% for A4C and PLAX, respectively. 3) Implementation of the voting strategy notably enhanced the positive predictive value (PPV) and negative predictive value (NPV) of individual-level classification results, enhancing the reliability of our classification outcomes. CONCLUSIONS: These findings indicate that CAN is a feasible technique for AI-assisted PAH diagnosis, providing new insights into cardiac structural changes observed in echocardiography.

9.
Front Immunol ; 14: 1254753, 2023.
Article in English | MEDLINE | ID: mdl-37954591

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, of which the leading cause of death is cardiovascular disease (CVD). The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) in RA decrease especially under hyperinflammatory conditions. It is conflictive with the increased risk of CVD in RA, which is called "lipid paradox". The systemic inflammation may explain this apparent contradiction. The increased systemic proinflammatory cytokines in RA mainly include interleukin-6(IL-6)、interleukin-1(IL-1)and tumor necrosis factor alpha(TNF-α). The inflammation of RA cause changes in the subcomponents and structure of HDL particles, leading to a weakened anti-atherosclerosis function and promoting LDL oxidation and plaque formation. Dysfunctional HDL can further worsen the abnormalities of LDL metabolism, increasing the risk of cardiovascular disease. However, the specific mechanisms underlying lipid changes in RA and increased CVD risk remain unclear. Therefore, this article comprehensively integrates the latest existing literature to describe the unique lipid profile of RA, explore the mechanisms of lipid changes, and investigate the impact of lipid changes on cardiovascular disease.


Subject(s)
Arthritis, Rheumatoid , Cardiovascular Diseases , Dyslipidemias , Humans , Cardiovascular Diseases/etiology , Inflammation , Cholesterol, LDL , Tumor Necrosis Factor-alpha/metabolism
10.
Front Immunol ; 14: 1258765, 2023.
Article in English | MEDLINE | ID: mdl-38022540

ABSTRACT

Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Signal Transduction , Humans , Oncostatin M , Signal Transduction/physiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism
11.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3772-3786, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37805853

ABSTRACT

Dorsal root ganglia (DRG) is an essential part of the peripheral nervous system and the hub of the peripheral sensory afferent. The dynamic changes of neuronal cells and their gene expression during the development of dorsal root ganglion have been studied through single-cell RNAseq analysis, while the dynamic changes of non-neuronal cells have not been systematically studied. Using single cell RNA sequencing technology, we conducted a research on the non-neuronal cells in the dorsal root ganglia of rats at different developmental stage. In this study, primary cell suspension was obtained from using the dorsal root ganglions (DRGs, L4-L5) of ten 7-day-old rats and three 3-month-old rats. The 10×Genomics platform was used for single cell dissociation and RNA sequencing. Twenty cell subsets were acquired through cluster dimension reduction analysis, and the marker genes of different types of cells in DRG were identified according to previous researches about DRG single cell transcriptome sequencing. In order to find out the non-neuronal cell subsets with significant differences at different development stage, the cells were classified into different cell types according to markers collected from previous researches. We performed pseudotime analysis of 4 types Schwann cells. It was found that subtype Ⅱ Schwann cells emerged firstly, and then were subtype Ⅲ Schwann cells and subtype Ⅳ Schwann cells, while subtype Ⅰ Schwann cells existed during the whole development procedure. Pseudotime analysis indicated the essential genes influencing cell fate of different subtypes of Schwann cell in DRG, such as Ntrk2 and Pmp2, which affected cell fate of Schwann cells during the development period. GO analysis of differential expressed genes showed that the up-regulated genes, such as Cst3 and Spp1, were closely related to biological process of tissue homeostasis and multi-multicellular organism process. The down regulated key genes, such as Col3a1 and Col4a1, had close relationship with the progress of extracellular structure organization and negative regulation of cell adhesion. This suggested that the expression of genes enhancing cell homestasis increased, while the expression of related genes regulating ECM-receptor interaction pathway decreased during the development. The discovery provided valuable information and brand-new perspectives for the study on the physical and developmental mechanism of Schwann cell as well as the non-neuronal cell changes in DRG at different developmental stage. The differential gene expression results provided crucial references for the mechanism of somatosensory maturation during development.


Subject(s)
Ganglia, Spinal , Transcriptome , Rats , Animals , Ganglia, Spinal/metabolism , Rats, Sprague-Dawley , Neurons/metabolism , Schwann Cells/physiology
12.
Hum Vaccin Immunother ; 19(2): 2240689, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37529904

ABSTRACT

Immune-related adverse events (irAEs) pose a significant challenge for the widespread adoption of immuno-oncology therapies, but their symptoms can vary widely. In particular, the relationship between irAEs and pleural effusion (PE) in patients with advanced non-small cell lung cancer (NSCLC) remains unclear. In this report, we present the case of an advanced NSCLC patient who developed persistent PE despite receiving camrelizumab (an anti-programmed death receptor 1 [PD-1] antibody) and chemotherapy as first-line treatment. While the patient's tumor biomarkers decreased after multiple cycles of treatment, the PE persisted despite negative findings on cytology and pleural biopsy. Additionally, the use of anti-angiogenic drugs failed to alleviate the PE. Screening for rheumatic connective tissue markers and tuberculosis yielded negative results, but intrathoracic dexamethasone injections in two doses resulted in a significant reduction of the PE. This case suggests that PE may represent a rare type of irAE that should be monitored for during prolonged immuno-oncology therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pleural Effusion , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Pleural Effusion/chemically induced , Pleural Effusion/drug therapy , Immunotherapy/adverse effects
13.
Biomed Pharmacother ; 166: 115322, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586115

ABSTRACT

Fructus psoraleae (FP) is a commonly used herb with potential reproductive toxicity. Bavachin (BV), one of essential active ingredients of FP, was found to exhibit estrogenic activity, but its effect on female reproductive system remains unknown. In this study, the impact of BV on the female zebrafish reproductive system and underlying molecular mechanism were determined in vivo and ex vivo. The results showed that BV could accumulate in zebrafish ovary, leading to obvious follicular atresia and increase in gonadal index and vitellogenin content. Endoplasmic reticulum (ER) swelling and hypertrophy were observed in the BV-treated zebrafish ovary, accompanied by an increase in the expressions of ER stress and unfolded protein response (UPR) related genes, namely atf6, ire-1α and xbp1s. In the ex vivo study, BV was found to decrease the survival rate and maturation rate of oocytes, while increasing the expression of Ca2+. Additionally, BV led to an elevation in the level of estrogen receptor ESR1 and the expressions of genes involved in ER stress and UPR, including atf6, ire-1α, xbp1s, chop and perk. Moreover, molecular docking revealed that BV could directly bind to immunoglobulin heavy chain binding protein (BiP) and estrogen receptor 1 (ESR1). Besides, the alterations induced by BV could be partially reversed by fulvestrant (FULV) and 4-phenylbutyric acid (4-PBA), respectively. Thus, long-termed BV-containing medicine treatment could generate reproductive toxicity in female zebrafish by causing follicular atresia through BiP- and ESR-mediated ER stress and UPR, providing a potential target for the prevention of reproductive toxicity caused by BV.


Subject(s)
Ovary , Zebrafish , Female , Animals , Follicular Atresia , Molecular Docking Simulation , Signal Transduction , Endoplasmic Reticulum Stress , Unfolded Protein Response , Apoptosis
14.
J Pharm Anal ; 13(7): 806-816, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577386

ABSTRACT

Hepatotoxicity induced by bioactive constituents in traditional Chinese medicines or herbs, such as bavachin (BV) in Fructus Psoraleae, has a prolonged latency to overt drug-induced liver injury in the clinic. Several studies have described BV-induced liver damage and underlying toxicity mechanisms, but little attention has been paid to the deciphering of organisms or cellular responses to BV at no-observed-adverse-effect level, and the underlying molecular mechanisms and specific indicators are also lacking during the asymptomatic phase, making it much harder for early recognition of hepatotoxicity. Here, we treated mice with BV for 7 days and did not detect any abnormalities in biochemical tests, but found subtle steatosis in BV-treated hepatocytes. We then profiled the gene expression of hepatocytes and non-parenchymal cells at single-cell resolution and discovered three types of hepatocyte subsets in the BV-treated liver. Among these, the hepa3 subtype suffered from a vast alteration in lipid metabolism, which was characterized by enhanced expression of apolipoproteins, carboxylesterases, and stearoyl-CoA desaturase 1 (Scd1). In particular, increased Scd1 promoted monounsaturated fatty acids (MUFAs) synthesis and was considered to be related to BV-induced steatosis and polyunsaturated fatty acids (PUFAs) generation, which participates in the initiation of ferroptosis. Additionally, we demonstrated that multiple intrinsic transcription factors, including Srebf1 and Hnf4a, and extrinsic signals from niche cells may regulate the above-mentioned molecular events in BV-treated hepatocytes. Collectively, our study deciphered the features of hepatocytes in response to BV insult, decoded the underlying molecular mechanisms, and suggested that Scd1 could be a hub molecule for the prediction of hepatotoxicity at an early stage.

15.
Basic Clin Pharmacol Toxicol ; 133(1): 43-58, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37186366

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of triptolide (TP) on collagen-induced arthritis (CIA) mice and the related mechanisms. METHODS: CIA mice were administered TP for 35 days. Mouse ankle joints and serum antibodies and cytokines were examined to assess the therapeutic effects of TP. The ratios of Treg, Th1 and Th17 cells were measured by flow cytometry and RT-qPCR. Reverse docking was used to characterize the binding modes of TP against target proteins. The expression of the STAT3 pathway in CIA mice was evaluated by western blotting and immunofluorescence staining. Mouse spleen lymphocytes were extracted, and the expression of the STAT3 pathway after IL-6 stimulation was analysed. RESULTS: TP could significantly alleviate joint swelling, reduce bone destruction and downregulate serum inflammation levels. TP improved the imbalance of Treg/Th17 cells in CIA mice. TP could form stable complexes with target proteins. TP significantly inhibited the activation of the JAK/PTEN-STAT3 pathway in mice. Moreover, TP regulated the activation of the JAK1/2-STAT3 signalling pathway in mouse spleen lymphocytes under inflammatory stimulation. CONCLUSION: TP can inhibit inflammation and alleviate bone destruction in CIA mice. The underlying mechanism is related to the regulation of the imbalance of Treg/Th17 cells through the JAK/PTEN-STAT3 pathway.


Subject(s)
Arthritis, Experimental , Mice , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , T-Lymphocytes, Regulatory/metabolism , Th17 Cells , Cytokines/metabolism , Inflammation/metabolism
16.
J Ethnopharmacol ; 309: 116274, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36841380

ABSTRACT

ETHNOPHAMACOLOGICAL RELEVANCE: Simiao Pill (SM) as a classic prescription of traditional Chinese medicine treatment of damp-heat arthralgia, the earliest from 'Cheng Fan Bian Du ', written by the Qing Dynasty doctor Zhang Bingcheng. Previous studies have shown that SM has obvious curative effect on rheumatoid arthritis, which provides a basis for the application of SM in rheumatoid arthritis related complications. AIM OF THE STUDY: Interstitial lung disease (ILD), as the most severe complication of rheumatoid arthritis (RA), lacks effective clinical treatments and a corresponding animal model. Simiao pill (SM) is a traditional Chinese medicine prescription extensively used as a complementary and alternative treatment for RA. However, the effect and mechanism of SM on RA-ILD have not yet been reported. This study aimed to investigate an appropriate animal model that can simulate RA-ILD, and the efficacy, safety, and mechanism of SM on RA-ILD. METHODS: Collagen-induced arthritis (CIA) and bleomycin-induced pulmonary fibrosis model were combined to construct the CIA-BLM model. After the intervention of SM, the protective effects of SM on RA-ILD were determined by detecting the CIA mouse arthritis index (AI), Spleen index, and the extent of pulmonary fibrosis. The joint inflammation and pulmonary fibrosis were detected by immunohistochemistry, H&E staining, safranin- O fast green Sirius red staining, trap staining, and Masson staining. Finally, the mechanism was verified by Western blot and immunohistochemistry. RESULTS: Our work showed that SM significantly reduced joint swelling, arthritis index, pulmonary fibrosis score, and spleen index in CIA mice. The pathological examination results indicated Si-Miao Pill suppressed inflammation, pulmonary fibrosis, bone erosion, and cartilage degradation of the ankle joint. Besides, SM up-regulated expressions of E-cadherin, whereas down-regulated expressions of α-SMA. Further studies confirmed that SM regulated JAK2/STAT3 and TGF-ß/SMAD2/3. CONCLUSION: SM can not only effectively improve joint inflammation by JAK2/STAT3 Pathway but also inhibit pulmonary fibrosis by TGF-ß/SMAD2/3. The fibrosis induced by CIA-BLM model was more stable and obvious than that induced by CIA model alone.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Lung Diseases, Interstitial , Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Bleomycin/toxicity , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/pathology , Inflammation/drug therapy
17.
J Ethnopharmacol ; 301: 115802, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36209953

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thousands of years of clinical practice in the treatment of joint-related diseases support the efficacy and safety of Wutou decoction (WTD). Nevertheless, the lack of pharmacological evidence and unclear mechanisms make it difficult for WTD to become a recognized complementary therapy for the treatment of rheumatoid arthritis (RA). AIM OF THE STUDY: This study aimed to investigate the effect of WTD against synovial inflammation in RA and whether this effect depends on the regulation of macrophage polarization. MATERIALS AND METHODS: Sprague-Dawley rats were used to establish the collagen-induced arthritis (CIA) model. WTD with low and high doses was administered for 45 days. RAW264.7 cells were stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4 to polarize M1 and M2 macrophages, which were pre-treated with WTD extract for 4 h. The anti-arthritic and anti-inflammatory effects of WTD were studied using arthritis score, histopathological staining, immunostaining, and enzyme-linked immunosorbent assay (ELISA). The polarization state of RAW264.7 cells and related pro/anti-inflammatory cytokines was detected by ELISA, reverse transcription quantitative polymerase chain reaction and western blotting. Western blotting and immunofluorescence were used to investigate the effect of WTD on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptors γ (PPARγ) activation both in vivo and in vitro. RESULTS: WTD significantly reduced the arthritis score and the pathological damage of the knee joint and decreased the expression of tumor necrosis factor alpha (TNF-α), IL-6 in serum, TNF-α, IL-1ß, monocyte chemoattractant protein-1 (MCP-1), and matrix metalloproteinase-3 (MMP3) in the knee synovium. WTD inhibited M1 type polarization and promoted M2 type polarization, both in vitro and in vivo, and reduced the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines. Experiments showed that WTD inhibited the phosphorylation of NF-κB and downstream p38 in the synovium of CIA rats and LPS-induced M1 type polarized RAW264.7 cells. In addition, PPARγ expression in the synovium of CIA rats was mainly located in the cytoplasm, and WTD treatment increased the nuclear translocation of PPARγ, which was further verified in RAW264.7 cells. CONCLUSIONS: NF-κB and PPARγ regulating M1 and M2 macrophage polarization and subsequent secretion of pro-inflammatory and anti-inflammatory cytokines are the underlying mechanisms of WTD that ameliorate RA synovial inflammation.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Rats , Anti-Inflammatory Agents , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Macrophages , NF-kappa B/metabolism , PPAR gamma/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
18.
Front Plant Sci ; 13: 997825, 2022.
Article in English | MEDLINE | ID: mdl-36352861

ABSTRACT

Citrus Huanglongbing (HLB), known as the most economically devastating disease in citrus industry, is mainly caused by phloem-restricted Gram-negative bacterium "Candidatus Liberibacter asiaticus" (CLas). To date, CLas is still unculturable in vitro, which has been dramatically delaying the research on its pathogenesis, and only few Sec-dependent effectors (SDEs) have been identified to elucidate the pathogenesis of CLas. Here, we confirmed that a CLas-secreted Sec-dependent polypeptide, namely SECP8 (CLIBASIA_05330), localized in nucleus, cytoplasm and cytoplasmic membrane, and showed remarkably higher transcript abundance in citrus than in psyllids. Potato virus X (PVX)-mediated transient expression assays indicated that mSECP8 (the mature form of SECP8) suppressed pro-apoptotic mouse protein BAX and Phytophthora infestans elicitin INF1-triggered hypersensitive response (HR) associated phenotypes, including cell death, H2O2 accumulation and callose deposition. Intriguingly, mSECP8 also inhibited SDE1 (CLIBASIA_05315)-induced water-soaked and dwarfing symptoms in Nicotiana benthamiana. In addition, mSECP8 can promote the susceptibility of transgenic Wanjincheng orange (Citrus sinensis) to CLas invasion and further HLB symptom development, and it contributes to the proliferation of Xanthomonas citri subsp. citri (Xcc). Moreover, the expression of ten immunity-related genes were significantly down-regulated in mSECP8 transgenic citrus than those in wide-type (WT) plants. Overall, we propose that mSECP8 may serve as a novel broad-spectrum suppressor of plant immunity, and provide the first evidence counteractive effect among CLas effectors. This study will enrich and provide new evidences for elucidating the pathogenic mechanisms of CLas in citrus host.

19.
Front Pharmacol ; 13: 883865, 2022.
Article in English | MEDLINE | ID: mdl-36046826

ABSTRACT

Pinelliae rhizoma (PR), one kind of commonly-used Chinese herbs, is generally prescribed to treat various respiratory diseases, including acute lung injury (ALI). However, the accurate bioactive ingredients of PR and the underlying pharmacological mechanism have both not been fully elucidated. Therefore, this study aimed to identify the bioactive ingredients that could alleviate lipopolysaccharide (LPS)-induced ALI and explore the possible mechanism involved. Our results confirmed that LPS infection indeed caused acute inflammatory damage in mice lung, accompanying with the enhancement of IL-1ß contents and the activation of the NLRP3 inflammasome in lung tissue and macrophagocyte, all of which were remarkably ameliorated by PR treatment. Next, mechanistically, LPS was found to trigger endoplasmic reticulum (ER) stress and downstream cellular calcium ions (Ca2+) release via activating Bip/ATF4/CHOP signaling pathway. Like PR, 4-PBA (a specific inhibitor of ER stress) not only obviously reversed Bip/ATF4/CHOP-mediated ER stress, but also significantly attenuated LPS-induced activation of the NLRP3 inflammasome. Furthermore, the bioactive ingredients of PR, which generated the anti-inflammatory effects, were screened by metabolomics and network pharmacology. In vitro experiments showed that chrysin, dihydrocapsaicin, and 7,8-dihydroxyflavone (7,8-DHF) notably suppressed LPS-induced ER stress and following NLRP3 inflammasome activation. In conclusion, our findings suggested that PR alleviated LPS-induced ALI by inhibiting ER stress-mediated NLRP3 inflammasome activation, which is mainly relevant with these three bioactive ingredients. This study provided a theoretical basis for the clinical application of PR to treat ALI, and these bioactive ingredients of PR would be promising therapeutic drugs for the treatment of ALI.

20.
J Oncol ; 2022: 2054901, 2022.
Article in English | MEDLINE | ID: mdl-36117849

ABSTRACT

Skin cutaneous melanoma (SKCM) is one of the most aggressive and life-threatening tumors. It has a high incidence rate, as well as significant metastasis and fatality rates. To successfully treat SKCM and to increase the overall survival rate, early identification and risk stratification are both absolutely necessary. Long noncoding RNAs (lncRNAs) play a significant regulatory role in a variety of cancers. However, the expression and function of many lncRNAs have not been investigated. We evaluated the expression profile of the long noncoding RNA LINC02249 (LINC02249) in pan-cancers by using data on gene expression obtained from TCGA and GTEx. The biological function of LINC02249 was determined by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The prognostic value of LINC02249 expression in SKCM patients was statistically analyzed. Besides, the ssGSEA approach was utilized in order to investigate the degree to which LINC02249 expression is correlated with tumor immune infiltration. In this study, the expression of LINC02249 was found to be abnormally high in a variety of tumors, according to our findings. When compared with nontumor specimens, the level of expression of LINC02249 was shown to be significantly elevated in SKCM samples. GO and KEGG assays revealed LINC02249 may be involved in tumor progression. High expression of LINC02249 was associated with shorter overall survival and disease-specific survival of SKCM patients. More importantly, multivariate methods revealed that LINC02249 expression was an independent prognostic factor for SKCM cases. Using ssGSEA, we found that the expression of LINC02249 was negatively associated with different tumor-infiltrating immune cells, especially aDC, Treg, and macrophages. Overall, our findings suggested that LINC02249 can serve as a novel biomarker to predict the prognosis and immune infiltration in SKCM.

SELECTION OF CITATIONS
SEARCH DETAIL
...