Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(12): e2307020, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239054

ABSTRACT

Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.


Subject(s)
Convection , Hot Temperature , Humans , Infrared Rays
2.
Adv Sci (Weinh) ; 11(10): e2305664, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38148594

ABSTRACT

Passive daytime radiative cooling technology presents a sustainable solution for combating global warming and accompanying extreme weather, with great potential for diverse applications. The key characteristics of this cooling technology are the ability to reflect most sunlight and radiate heat through the atmospheric transparency window. However, the required high solar reflectance is easily affected by environmental aging, rendering the cooling ineffective. In recent years, significant advancements have been made in understanding the failure mechanisms, design strategies, and manufacturing technologies of daytime radiative cooling. Herein, a critical review on anti-environmental aging passive daytime radiative cooling with the goal of advancing their commercial applications is presented. It is first introduced the optical mechanisms and optimization principles of radiative cooling, which serve as a basis for further endowing environmental durability. Then the environmental aging conditions of passive daytime radiative cooling, mainly focusing on UV exposure, thermal aging, surface contamination and chemical corrosion are discussed. Furthermore, the developments of anti-environmental aging passive daytime radiative cooling materials, including design strategies, fabrication techniques, structures, and performances, are reviewed and classified for the first time. Last but not the least, the remaining open challenges and the insights are presented for the further promotion of the commercialization progress.

3.
Chem Rev ; 123(23): 12595-12756, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38011110

ABSTRACT

Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.

4.
Science ; 379(6631): 488-493, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36730410

ABSTRACT

Soft materials tend to be highly permeable to gases, making it difficult to create stretchable hermetic seals. With the integration of spacers, we demonstrate the use of liquid metals, which show both metallic and fluidic properties, as stretchable hermetic seals. Such soft seals are used in both a stretchable battery and a stretchable heat transfer system that involve volatile fluids, including water and organic fluids. The capacity retention of the battery was ~72.5% after 500 cycles, and the sealed heat transfer system showed an increased thermal conductivity of approximately 309 watts per meter-kelvin while strained and heated. Furthermore, with the incorporation of a signal transmission window, we demonstrated wireless communication through such seals. This work provides a route to create stretchable yet hermetic packaging design solutions for soft devices.

5.
Adv Sci (Weinh) ; 9(26): e2202061, 2022 09.
Article in English | MEDLINE | ID: mdl-35843893

ABSTRACT

Daytime radiative cooling (DRC) materials offer a sustainable approach to thermal management by exploiting net positive heat transfer to deep space. While such materials typically have a white or mirror-like appearance to maximize solar reflection, extending the palette of available colors is required to promote their real-world utilization. However, the incorporation of conventional absorption-based colorants inevitably leads to solar heating, which counteracts any radiative cooling effect. In this work, efficient sub-ambient DRC (Day: -4 °C, Night: -11 °C) from a vibrant, structurally colored film prepared from naturally derived cellulose nanocrystals (CNCs), is instead demonstrated. Arising from the underlying photonic nanostructure, the film selectively reflects visible light resulting in intense, fade-resistant coloration, while maintaining a low solar absorption (≈3%). Additionally, a high emission within the mid-infrared atmospheric window (>90%) allows for significant radiative heat loss. By coating such CNC films onto a highly scattering, porous ethylcellulose (EC) base layer, any sunlight that penetrates the CNC layer is backscattered by the EC layer below, achieving broadband solar reflection and vibrant structural color simultaneously. Finally, scalable manufacturing using a commercially relevant roll-to-roll process validates the potential to produce such colored radiative cooling materials at a large scale from a low-cost and sustainable feedstock.


Subject(s)
Nanostructures , Photons , Cold Temperature , Nanostructures/chemistry , Phase Transition , Sunlight
6.
Nanoscale ; 12(7): 4295-4301, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32025690

ABSTRACT

Discrete droplet transport has drawn much interest in a broad range of applications. Controlling the motion direction in droplet transport, however, is a long-lasting challenge. In this work, a simple yet efficient approach is demonstrated to realize the motion of droplets with directional control on nanostructured surfaces with predefined channels. Light is used as the external stimulus to induce the uneven thermal expansion of the substrate, which leads to the tilting of nanostructured channels so that the droplet is driven to move along the channel. Due to the easy manipulation of light, including both the light position and power density, this study demonstrates the controllable entrance of static water droplets into targeted channels and the simultaneous control of the motion of multiple droplets in multi-channel systems, using just one light source. Besides static droplets, this approach can also be applied for the directional control of moving droplets in multi-channel systems. As a proof-of-concept, such an approach has been utilized for efficient multiplexed reactions for chemical sensing or microreactor applications. This work offers an alternative approach for the manipulation of droplet movement in applications that involve the control of droplet motion.

7.
ACS Appl Mater Interfaces ; 11(7): 7584-7590, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30688056

ABSTRACT

Solar-driven interfacial evaporation, as one of the most effective ways to convert and utilize solar energy, has attracted lot of interest recently. Most of the previous research studies, however, mainly focused on nonpatterned solar absorbers by improving the structural and chemical characteristics of the solar absorbers used in the interfacial evaporation systems. In this work, we investigated the influence of patterned surface on the evaporation performance of solar absorbers. The patterned surfaces studied, which include black patterns and white patterns, were achieved by selectively printing carbon black on the air-laid paper. Such a design leads to the lateral temperature differences between adjacent patterns of the solar absorber under solar illumination. The temperature differences result in the lateral heat and mass transfer between those patterns, which can effectively accelerate solar-driven vapor generation. With similar patterns and same coverage of carbon black, the increase in the circumference of the surface patterns leads to the increase in the evaporation performance. Additionally, we found that the evaporation performance can be optimized through the design of surface patterns, which demonstrates the potential in reducing the usage of the light-absorbing materials in the solar absorber. The findings in this work not only expand the understanding of the interfacial evaporation systems but also offer additional guidelines in designing interfacial evaporation systems.

8.
Adv Mater ; 30(28): e1707632, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29750376

ABSTRACT

Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward.


Subject(s)
Biosensing Techniques
9.
Nanoscale ; 10(2): 533-537, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29260187

ABSTRACT

This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.


Subject(s)
Biomimetic Materials , Gold , Nanostructures , Animals , Butterflies , Metal Nanoparticles , Spectrum Analysis, Raman
10.
RSC Adv ; 8(57): 32395-32400, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35547683

ABSTRACT

This work reports a bioinspired three-dimensional (3D) heterogeneous structure for optical hydrogen gas (H2) sensing. The structure was fabricated by selective modification of the photonic architectures of Morpho butterfly wing scales with Pd nanostrips. The coupling of the plasmonic mode of the Pd nanostrips with the optical resonant mode of the Morpho biophotonic architectures generated a sharp reflectance peak in the spectra of the Pd-modified butterfly wing, as well as enhancement of light-matter interaction in Pd nanostrips. Exposure to H2 resulted in a rapid reversible increase in the reflectance of the Pd-modified butterfly wing, and the pronounced response of the reflectance was at the wavelength where the plasmonic mode strongly interplayed with the optical resonant mode. Owing to the synergetic effect of Pd nanostrips and biophotonic structures, the bioinspired sensor achieved an H2 detection limit of less than 10 ppm. Besides, the Pd-modified butterfly wing also exhibited good sensing repeatability. The results suggest that this approach provides a promising optical H2 sensing scheme, which may also offer the potential design of new nanoengineered structures for diverse sensing applications.

11.
Small ; 11(42): 5705-11, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26397977

ABSTRACT

Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.


Subject(s)
Butterflies , Optical Phenomena , Wings, Animal/chemistry , Animals , Biomimetic Materials/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Color , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanostructures/chemistry , Photons , Reactive Oxygen Species/metabolism , Wings, Animal/metabolism
12.
Adv Mater ; 27(3): 428-63, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25270292

ABSTRACT

In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented.


Subject(s)
Biomimetic Materials/chemistry , Biomimetics/methods , Temperature , Animals , Humans
13.
Adv Mater ; 27(6): 1077-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25532496

ABSTRACT

Inspired by butterflies an advanced detection and sensing system is developed. The hierarchical nanoarchitecture of Morpho butterfly wings is shown to facilitate the selective modification of such a structure, which results in a sensitive infrared response. These findings offer a new path both for detecting infrared photons and for generating nanostructured bimaterial systems for high-performance sensing platforms.

14.
Small ; 10(16): 3234-9, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24821378

ABSTRACT

Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.


Subject(s)
Air , Nanoparticles , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...