Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 172: 119-128, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377667

ABSTRACT

This study aimed to identify neural biomarkers for schizophrenia (SZ) and bipolar disorder (BP) by analyzing multimodal neuroimaging. Utilizing data from structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI), multiclass classification models were created for SZ, BP, and healthy controls (HC). A total of 113 participants (BP: 31, SZ: 39, and HC: 43) were recruited under strict enrollment control, from which 272, 200, and 1875 features were extracted from sMRI, DTI, and rs-fMRI data, respectively. A support vector machine (SVM) with recursive feature elimination (RFE) was employed to build the models using a one-against-one approach and leave-one-out cross-validation, achieving a classification accuracy of 70.8%. The most discriminative features were primarily from rs-fMRI, along with significant findings in sMRI and DTI. Key biomarkers identified included the increased thickness of the left cuneus cortex and decreased regional functional connectivity strength (rFCS) in the left supramarginal gyrus as shared indicators for BP and SZ. Additionally, decreased fractional anisotropy in the left superior fronto-occipital fasciculus was suggested as specific to BP, while decreased rFCS in the left inferior parietal area might serve as a specific biomarker for SZ. These findings underscore the potential of multimodal neuroimaging in distinguishing between BP and SZ and contribute to the understanding of their neural underpinnings.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Diffusion Tensor Imaging , Neuroimaging , Magnetic Resonance Imaging/methods , Biomarkers , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...