Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement (N Y) ; 5: 717-731, 2019.
Article in English | MEDLINE | ID: mdl-31921964

ABSTRACT

INTRODUCTION: Iron accumulates in the brain during aging, which catalyzes radical formation, causing neuronal impairment, and is thus considered a pathogenic factor in Alzheimer's disease (AD). To scavenge excess iron-catalyzed radicals and thereby protect the brain and decrease the incidence of AD, we synthesized a soluble pro-iron 5-YHEDA peptide. However, the blood-brain barrier (BBB) blocks large drug molecules from entering the brain and thus strongly reduces their therapeutic effects. However, alternative receptor- or transporter-mediated approaches are possible. METHODS: A low-density lipoprotein receptor (LDLR)-binding segment of Apolipoprotein B-100 was linked to the 5-YHEDA peptide (bs-5-YHEDA) and intracardially injected into senescent (SN) mice that displayed symptoms of cognitive impairment similar to those of people with AD. RESULTS: We successfully delivered 5-YHEDA across the BBB into the brains of the SN mice via vascular epithelium LDLR-mediated endocytosis. The data showed that excess brain iron and radical-induced neuronal necrosis were reduced after the bs-5-YHEDA treatment, together with cognitive amelioration in the SN mouse, and that the senescence-associated ferritin and transferrin increase, anemia and inflammation reversed without kidney or liver injury. DISCUSSION: bs-5-YHEDA may be a mild and safe iron remover that can cross the BBB and enter the brain to relieve excessive iron- and radical-induced cognitive disorders.

2.
Drug Deliv Transl Res ; 9(1): 394-403, 2019 02.
Article in English | MEDLINE | ID: mdl-30136122

ABSTRACT

Alzheimer's disease (AD) is currently incurable and places a large burden on the caregivers of AD patients. In the AD brain, iron is abundant, catalyzing free radicals and impairing neurons. The blood-brain barrier hampers antidementia drug delivery via circulation to the brain, which limits the therapeutic effects of drugs. Here, according to the method described by Gobinda, we synthesized a 16 lysine (K) residue-linked low-density lipoprotein receptor-related protein (LRP)-binding amino acid segment of apolipoprotein E (K16APoE). By mixing this protein with our designed therapeutic peptide HAYED, we successfully transported HAYED into an AD model mouse brain, and the peptide scavenged excess iron and radicals and decreased the necrosis of neurons, thus easing AD.


Subject(s)
Alzheimer Disease/drug therapy , Apolipoproteins E/chemistry , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Peptides/administration & dosage , Animals , Apolipoproteins E/metabolism , Biological Transport , Blood-Brain Barrier/drug effects , Disease Models, Animal , Humans , Iron/chemistry , Mice , Peptides/chemistry
3.
Free Radic Biol Med ; 130: 458-470, 2019 01.
Article in English | MEDLINE | ID: mdl-30448512

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aß42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.


Subject(s)
Aging/drug effects , Alzheimer Disease/drug therapy , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Peptide Fragments/pharmacology , Aging/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Iron/metabolism , Maze Learning/drug effects , Mice , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Peptide Fragments/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...