Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Regen ; 10(1): 21, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33900491

ABSTRACT

Organoids are three-dimensional self-organizing structures formed by adult tissue stem cells or pluripotent stem cells. They recapitulate cell-cell, cell-niche interactions in tissue development, homeostasis, regeneration and disease, and provide an in vitro model for drug screening. This review summarizes the recent advances of organoid cultures derived from adult lung stem cells and human pluripotent stem cells, especially focusing on the organoids of the distal airway stem/progenitor cells. We also discuss the applications of organoids in studying lung regeneration and pulmonary diseases, including pulmonary fibrosis, airway diseases and Coronavirus disease 2019 (COVID-19).

3.
EMBO J ; 39(22): e104748, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33058207

ABSTRACT

Programmable A > I RNA editing is a valuable tool for basic research and medicine. A variety of editors have been created, but a genetically encoded editor that is both precise and efficient has not been described to date. The trade-off between precision and efficiency is exemplified in the state of the art editor REPAIR, which comprises the ADAR2 deaminase domain fused to dCas13b. REPAIR is highly efficient, but also causes significant off-target effects. Mutations that weaken the deaminase domain can minimize the undesirable effects, but this comes at the expense of on-target editing efficiency. We have now overcome this dilemma by using a multipronged approach: We have chosen an alternative Cas protein (CasRx), inserted the deaminase domain into the middle of CasRx, and redirected the editor to the nucleus. The new editor created, dubbed REPAIRx, is precise yet highly efficient, outperforming various previous versions on both mRNA and nuclear RNA targets. Thus, REPAIRx markedly expands the RNA editing toolkit and illustrates a novel strategy for base editor optimization.


Subject(s)
Gene Editing/methods , RNA Editing , RNA/metabolism , Adenosine Deaminase/genetics , HEK293 Cells , Humans , Mutation , RNA-Binding Proteins/genetics , Transcriptome
4.
EMBO J ; 39(22): e104741, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33058229

ABSTRACT

Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.


Subject(s)
Cytidine Deaminase/genetics , Proteins/genetics , RNA Editing , Cell Nucleus/metabolism , HEK293 Cells , Humans , RNA/chemistry , RNA/metabolism , RNA, Guide, Kinetoplastida , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...