Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Food Chem ; 445: 138765, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38367562

ABSTRACT

This study aimed to reveal the effects and regulatory mechanism of dietary NDF on the performance of pigs by multi-omics analysis. Results showed that 16 % dietary NDF significantly improved meat quality, increased flavor amino acid content, and reduced backfat thickness and the feed-to-gain ratio. 16S rDNA sequencing showed that 16 % NDF significantly increased the abundance of Akkermansia, Lachnoclostridium, and Ruminococcus. Transcript analysis showed that genes related to muscle development and lipid metabolism were significantly modified. Metabonomic analysis showed that 16 % NDF significantly increased amino and fatty acid related metabolites. Correlation analysis suggested that 16 % NDF treatment may alter the gut microbiota and metabolites, regulate the expression of genes related to lipid and amino metabolism, and ultimately affect the flavor and performance of pigs. This study provides a novel understanding about the effect and regulatory mechanism of NDF supplements on the finishing pigs and a relevant reference for the improvement of diet formulation.


Subject(s)
Amino Acids , Detergents , Swine/genetics , Animals , Amino Acids/metabolism , Multiomics , Body Composition , Dietary Supplements , Diet/veterinary , Meat/analysis , Animal Feed/analysis
2.
Biomedicines ; 11(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37371649

ABSTRACT

Plant-derived exosomes (PLDEs) are small extracellular vesicles that encapsulate proteins, nucleic acids and lipids, and they are usually involved in intercellular communication and molecular transport in plants. PLDEs are widely used in the therapy of diseases due to their abundance and easy availability. The diverse roles of PLDEs, which include transportation of drugs, acting as biomarkers for diagnosis of diseases and their roles in different therapies, suggest that there is a need to fully understand all the mechanisms involved in order to provide the optimum conditions for their therapeutic use. This review summarizes the biogenesis, components and functions of PLDEs and focuses on their use as therapeutic agents in the treatment of inflammatory diseases. It also explores new ideas for novel approaches in which PLDEs could potentially help patients with inflammatory diseases in the future.

3.
Crit Rev Food Sci Nutr ; 62(9): 2404-2431, 2022.
Article in English | MEDLINE | ID: mdl-33938780

ABSTRACT

Increased consumer awareness of health and wellness has promoted a high demand for foods and beverages with functional and therapeutic properties. Cereals, apart from being important staple crops and primary sources of energy and nutrition, are replete with bioactive phytochemicals with health properties. Cereal grains contain a diverse range of bioactive phytochemicals including phenolic compounds, dietary fibers, carotenoids, tocols, phytosterols, γ-oryzanol, and phytic acid and therefore have great potential for processing into functional beverages. Although there are a variety of cereal grain-based beverages produced world-wide, very little scientific and technological attention has been paid to them. In this review, we have discussed cereal grain-based functional beverages based on 3 main categories: cereal grain-based milk alternatives, roasted cereal grain teas, fermented nonalcoholic cereal grain beverages. The processing techniques, health properties and product features of these beverages are elaborated, and the challenges and future perspectives are proposed. As the food market becomes increasingly diverse, cereal grain-based beverages could be a promising new category of health functional beverages in our daily life.


Subject(s)
Edible Grain , Phytochemicals , Beverages , Dietary Fiber/analysis , Edible Grain/chemistry , Phenols/analysis , Phytochemicals/analysis
4.
Animals (Basel) ; 11(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34359128

ABSTRACT

The effects of dietary hydrolyzed Chinese gallnut tannic acid(GCT) as a replacement for ZnO were investigated on weaned piglets. A total of 72 weaned piglets at 31 ± 1 day (six replicate pens per treatment with six piglets per pen) were selected and divided randomly into two groups: a control group, with a basal diet of + 1600 mg/kg ZnO; and a treated group, with a basal diet of + 1899.5 mg/kg GCT. Data analysis showed that the significance of average daily gain and average daily feed intake between the two groups was p = 0.731 and p = 0.799, respectively. Compared with the control group, the diarrhea rate of piglets in the treated group underwent no noticeable change on days 0-7 (p = 0.383) and 7-14 (p = 0.263), but decreased significantly on days 14-21 (p < 0.05). Additionally, we found GCT can reduce the crypt depth of the ileum and improve its antioxidant capacity (p < 0.05). High throughput sequencing showed that GCT increased the richness of the bacteria Lachnospiraceae (p = 0.005), Prevotella_2 (p = 0.046) and Lactobacillus amylovorus (p = 0.081), which are associated with the degradation of cellulose and hemicellulose. The study indicated that 1899.5 mg/kg GCT could be an alternative for 1600 mg/kg ZnO in the diet of piglets.

5.
Data Brief ; 33: 106584, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33318974

ABSTRACT

Sorghum (Sorghum bicolor) grain is a rich source of bioactive phenolic compounds and understanding the phenolic profile of different sorghum genotypes is an important step towards the selection of the most appropriate genotype for industrial applications. The free and bound phenolic compounds of sorghum bran and kernel fractions from five Australian-grown sorghum genotypes (1 white, 2 red, 1 brown and 1 black coloured grain) were identified/tentatively identified by HPLC-DAD-ESI-QTOF-MS/MS and quantified/semi-quantified by HPLC-DAD. Firstly, MS chromatograms of sorghum samples and standards and the MS/MS spectra of individual detected compounds and standards are presented. Then quantification data of these compounds is provided. This dataset is supplementary to the research paper "Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes" [1].

6.
Food Res Int ; 137: 109671, 2020 11.
Article in English | MEDLINE | ID: mdl-33233248

ABSTRACT

In this study, comprehensive profiling of the phenolic compounds in sorghum grain was achieved by analysing the free and bound extracts of sorghum bran and kernel fractions from five Australian sorghum genotypes (1 white, 2 red, 1 brown and 1 black coloured), using HPLC-DAD-ESI-QTOF-MS/MS. A total of 110 phenolic compounds were annotated, out of which 56 were reported for the first time in sorghum grain. Compounds with matched authentic standards were quantified/semi-quantified. Multiple factor analysis (MFA) was performed and heatmaps generated, which provided direct visualisation of the distribution of individual phenolic compounds/subclasses between the sorghum samples. The results indicated that phenolic compounds were concentrated on the bran, and free and bound extracts had different phenolic composition. The phenolic compound/subclass profile varied greatly among sorghum genotypes. Brown sorghum genotype (IS131C) had the highest concentration of total phenolic contents, and the bran fraction of brown sorghum had the most abundant and diverse phenolic composition among all tested samples. This study provides the most comprehensive phenolic profile of Australian representative sorghum grains up to date.


Subject(s)
Sorghum , Australia , Chromatography, High Pressure Liquid , Genotype , Plant Extracts , Sorghum/genetics , Tandem Mass Spectrometry
7.
Foods ; 9(9)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942661

ABSTRACT

Diabetes is a global health challenge. Currently, an effective treatment for diabetes is to reduce the postprandial hyperglycaemia by inhibiting the carbohydrate hydrolysing enzymes in the digestive system. In this study, we investigated the in vitro α-glucosidase and α-amylase inhibitory effects of free and bound phenolic extracts, from the bran and kernel fractions of five sorghum grain genotypes. The results showed that the inhibitory effect of sorghum phenolic extracts depended on the phenolic concentration and composition. Sorghum with higher phenolic contents generally had higher inhibitory activity. Among the tested extracts, the brown sorghum (IS131C)-bran-free extract (BR-bran-free, half-maximal inhibitory concentration (IC50) = 18 ± 11 mg sorghum/mL) showed the strongest inhibition against α-glucosidase which was comparable to that of acarbose (IC50 = 1.39 ± 0.23 mg acarbose/mL). The red sorghum (Mr-Buster)-kernel-bound extract (RM-kernel-bound, IC50 = 160 ± 12 mg sorghum/mL) was the most potent in inhibiting α-amylase but was much weaker compared to acarbose (IC50 = 0.50 ± 0.03 mg acarbose/mL).

8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(8): 2196-8, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-19839337

ABSTRACT

A new method for the determination of the total volatile basic nitrogen (TVB-N) by reflectance spectroscopy was developed. The method was based on the reaction of TVB-N with Nessler's reagent treated by molecular sieve and the reflectance-absorption value F(R), which is directly proportional to the amount of NH2 Hg IO in solid phase, was measured by the reflection spectrometer. The fundamental principle, effective factors and experimental conditions of the method were discussed. The special features of this method were its simplicity in operation, relatively high sensitivity of determination and the use of a small amount of reagent. Linear calibration graph was obtained in the range 1-8 microg x mL(-1) with a detection limit of 0.1 microg x mL(-1). The method was applied to monitor the fresh degree of fish and pork. The result discovered that the total volatile basic nitrogen increased rapidly along with the time extension, indicating that the deterioration of fish and pork was an acceleration process, and the deterioration speed of fish was faster than that of pork.

SELECTION OF CITATIONS
SEARCH DETAIL
...