Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 125(16): 166801, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124864

ABSTRACT

We investigate disorder-driven topological phase transitions in quantized electric quadrupole insulators in two dimensions. We show that chiral symmetry can protect the quantization of the quadrupole moment q_{xy}, such that the higher-order topological invariant is well defined even when disorder has broken all crystalline symmetries. Moreover, nonvanishing q_{xy} and consequent corner modes can be induced from a trivial insulating phase by disorder that preserves chiral symmetry. The critical points of such topological phase transitions are marked by the occurrence of extended boundary states even in the presence of strong disorder. We provide a systematic characterization of these disorder-driven topological phase transitions from both bulk and boundary descriptions.

2.
Phys Rev Lett ; 124(20): 206603, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32501096

ABSTRACT

Quantum transport in magnetic topological insulators reveals a strong interplay between magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi_{2}Se_{3} thin films showed the anomalous temperature dependence of the magnetoconductivity while their field dependence presents a clear signature of weak antilocalization [Tkac et al., Phys. Rev. Lett. 123, 036406 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.036406]. Here, we demonstrate that the tiny mass of the surface electrons induced by the bulk magnetization leads to a temperature-dependent correction to the π Berry phase and generates a decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the quantum correction to conductivity can exhibit nonmonotonic behavior by decreasing the temperature. This effect is attributed to the close relation of the Berry phase and quantum interference of the topological surface electrons in quantum topological materials.

3.
Phys Rev Lett ; 125(25): 256601, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416380

ABSTRACT

Resistivity anomaly, a sharp peak of resistivity at finite temperatures, in the transition-metal pentatellurides ZrTe_{5} and HfTe_{5} was observed four decades ago, and more exotic and anomalous behaviors of electric and thermoelectric transport were revealed in recent years. Here, we present a theory of Dirac polarons, composed by massive Dirac electrons and holes in an encircling cloud of lattice displacements or phonons at finite temperatures. The chemical potential of Dirac polarons sweeps the band gap of the topological band structure by increasing the temperature, leading to the resistivity anomaly. Formation of a nearly neutral state of Dirac polarons accounts for the anomalous behaviors of the electric and thermoelectric resistivity around the peak of resistivity.

4.
Phys Rev Lett ; 122(24): 246601, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31322363

ABSTRACT

Magnetoresistance in many samples of Dirac semimetals and topological insulators displays nonmonotonic behavior over a wide range of magnetic fields. Here a formula of magnetoconductivity is presented for massless and massive Dirac fermions in Dirac materials due to quantum interference of Dirac fermions in scalar impurity scattering potentials. It reveals a striking crossover from positive to negative magnetoresistivity, uncovering strong competition between weak localization and weak antilocalization in multiple Cooperon channels at different chemical potentials, effective masses, and finite temperatures. This work sheds light on the important role of strong coupling of the conduction and valence bands in the quantum interference transport in topological nontrivial and trivial Dirac materials.

5.
J Phys Condens Matter ; 30(39): 395301, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30129927

ABSTRACT

Spin-orbit torque (SOT) refers to the excitation of magnetization dynamics via spin-orbit coupling (SOC) under the application of a charged current. In this work, we introduce a simple and intuitive description of the SOT in terms of spin force. In Rashba SOC system, the damping-like SOT can be expressed as [Formula: see text], in analogy to the classical torque-force relation, where R c is the effective radius characterizing the Rashba splitting in the momentum space. As a consequence, the magnetic energy is transferred to the conduction electrons, which dissipates through Joule heating at a rate of [Formula: see text], with j e being the applied current. Finally, we propose an experimental verification of our findings via measurement of the anisotropic magnetoresistance effect.

6.
Sci Bull (Beijing) ; 63(9): 580-594, 2018 May 15.
Article in English | MEDLINE | ID: mdl-36658845

ABSTRACT

The introduction of topological invariants, ranging from insulators to metals, has provided new insights into the traditional classification of electronic states in condensed matter physics. A sudden change in the topological invariant at the boundary of a topological nontrivial system leads to the formation of exotic surface states that are dramatically different from its bulk. In recent years, significant advancements in the exploration of the physical properties of these topological systems and regarding device research related to spintronics and quantum computation have been made. Here, we review the progress of the characterization and manipulation of topological phases from the electron transport perspective and also the intriguing chiral/Majorana states that stem from them. We then discuss the future directions of research into these topological states and their potential applications.

7.
Sci Rep ; 6: 39188, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27991541

ABSTRACT

Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors.

8.
Phys Rev Lett ; 117(7): 077201, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563993

ABSTRACT

Berry phase physics is closely related to a number of topological states of matter. Recently discovered topological semimetals are believed to host a nontrivial π Berry phase to induce a phase shift of ±1/8 in the quantum oscillation (+ for hole and - for electron carriers). We theoretically study the Shubnikov-de Haas oscillation of Weyl and Dirac semimetals, taking into account their topological nature and inter-Landau band scattering. For a Weyl semimetal with broken time-reversal symmetry, the phase shift is found to change nonmonotonically and go beyond known values of ±1/8 and ±5/8, as a function of the Fermi energy. For a Dirac semimetal or paramagnetic Weyl semimetal, time-reversal symmetry leads to a discrete phase shift of ±1/8 or ±5/8. Different from the previous works, we find that the topological band inversion can lead to beating patterns in the absence of Zeeman splitting. We also find the resistivity peaks should be assigned integers in the Landau index plot. Our findings may account for recent experiments in Cd_{2}As_{3} and should be helpful for exploring the Berry phase in various 3D systems.

9.
Nat Commun ; 7: 10735, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26911701

ABSTRACT

Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.

10.
Nat Commun ; 7: 10301, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26744088

ABSTRACT

A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 10(17) cm(-3) at 300 K to 2.2 × 10(16) cm(-3) below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed.

11.
Sci Rep ; 5: 13277, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26304795

ABSTRACT

The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

12.
Nano Lett ; 15(3): 2061-6, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25665017

ABSTRACT

We report tunable in-plane anisotropic magnetoresistance (AMR) in nanodevices based on topological insulator BiSbTeSe2 (BSTS) nanoflakes by electric gating. The AMR can be changed continuously from negative to positive when the Fermi level is manipulated to cross the Dirac point by an applied gate electric field. We also discuss effects of the gate electric field, current density, and magnetic field on the in-plane AMR with a simple physical model, which is based on the in-plane magnetic field induced shift of the spin-momentum locked topological two surface states that are coupled through side surfaces and bulk weak antilocalization (WAL). The large, tunable and bipolar in-plane AMR in BSTS devices provides the possibility of fabricating more sensitive logic and magnetic random access memory AMR devices.

13.
ACS Nano ; 8(9): 9616-21, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25184364

ABSTRACT

Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi2Te3 thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak antilocalization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.

14.
Phys Rev Lett ; 112(14): 146601, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765998

ABSTRACT

The electronic transport experiments on topological insulators exhibit a dilemma. A negative cusp in magnetoconductivity is widely believed as a quantum transport signature of the topological surface states, which are immune from localization and exhibit the weak antilocalization. However, the measured conductivity drops logarithmically when lowering temperature, showing a typical feature of the weak localization as in ordinary disordered metals. Here, we present a conductivity formula for massless and massive Dirac fermions as a function of magnetic field and temperature, by taking into account the electron-electron interaction and quantum interference simultaneously. The formula reconciles the dilemma by explicitly clarifying that the temperature dependence of the conductivity is dominated by the interaction, while the magnetoconductivity is mainly contributed by the quantum interference. The theory paves the road to quantitatively study the transport in topological insulators, and can be extended to other two-dimensional Dirac-like systems, such as graphene, transition metal dichalcogenides, and silicene.

15.
Sci Rep ; 4: 3842, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24452532

ABSTRACT

Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment.

16.
Phys Rev Lett ; 111(14): 146802, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138262

ABSTRACT

The experimental observation of the long-sought quantum anomalous Hall effect was recently reported in magnetically doped topological insulator thin films [Chang et al., Science 340, 167 (2013)]. An intriguing observation is a rapid decrease from the quantized plateau in the Hall conductance, accompanied by a peak in the longitudinal conductance as a function of the gate voltage. Here, we present a quantum transport theory with an effective model for magnetic topological insulator thin films. The good agreement between theory and experiment reveals that the measured transport originates from a topologically nontrivial conduction band which, near its band edge, has concentrated Berry curvature and a local maximum in group velocity. The indispensable roles of the broken structure inversion and particle-hole symmetries are also revealed. The results are instructive for future experiments and transport studies based on first-principles calculations.

17.
Phys Rev Lett ; 110(1): 016806, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383825

ABSTRACT

We study the quantum diffusive transport of multivalley massive Dirac cones, where time-reversal symmetry requires opposite spin orientations in inequivalent valleys. We show that the intervalley scattering and intravalley scattering can be distinguished from the quantum conductivity that corrects the semiclassical Drude conductivity, due to their distinct symmetries and localization trends. In immediate practice, it allows transport measurements to estimate the intervalley scattering rate in hole-doped monolayers of group-VI transition metal dichalcogenides (e.g., molybdenum dichalcogenides and tungsten dichalcogenides), an ideal class of materials for valleytronics applications. The results can be generalized to a large class of multivalley massive Dirac systems with spin-valley coupling and time-reversal symmetry.

18.
J Phys Condens Matter ; 23(49): 495301, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22089530

ABSTRACT

The influence of the dephasing effect on the conductance distribution of disordered graphene p-n junctions is studied. Without the dephasing, the conductance distribution has a very wide range and the conductance fluctuation is large. In this case, the conductance plateaus cannot be obtained in a single sample with the fixed disorder configuration. However, by introducing the dephasing, we find that the distribution becomes narrow dramatically and the fluctuation is suppressed strongly, so that the conductance plateaus are obtained clearly for one single sample, which is consistent with experimental measurements. Furthermore, we also investigate the scaling feature of the conductance distribution and find that it has good scaling behavior in the strong dephasing case.


Subject(s)
Electric Conductivity , Graphite/chemistry , Quantum Theory
19.
Phys Rev Lett ; 107(7): 076801, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21902413

ABSTRACT

A magnetoconductivity formula is presented for the surface states of a magnetically doped topological insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while random magnetic scattering always drives the system from the symplectic to the unitary class, the gap could induce a crossover from weak antilocalization to weak localization, tunable by the Fermi energy or the gap. This crossover presents a unique feature characterizing the surface states of a topological insulator with the gap opened at the Dirac point in the quantum diffusion regime.

20.
Phys Rev Lett ; 106(16): 166805, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21599398

ABSTRACT

We study the weak antilocalization (WAL) effect in topological insulator Bi(2)Te(3) thin films at low temperatures. The two-dimensional WAL effect associated with surface carriers is revealed in the tilted magnetic field dependence of magnetoconductance. Our data demonstrate that the observed WAL is robust against deposition of nonmagnetic Au impurities on the surface of the thin films, but it is quenched by the deposition of magnetic Fe impurities which destroy the π Berry phase of the topological surface states. The magnetoconductance data of a 5 nm Bi(2)Te(3) film suggests that a crossover from symplectic to unitary classes is observed with the deposition of Fe impurities.

SELECTION OF CITATIONS
SEARCH DETAIL
...