Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 23(12): 1832-7, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18424027

ABSTRACT

A disposable amperometric immunosensing strip was fabricated for rapid detection of Escherichia coli O157:H7. The method uses an indirect sandwich enzyme-linked immunoassay with double antibodies. Screen-printed carbon electrodes (SPCEs) were framed by commercial silver and carbon inks. For electrochemical characterization the carbon electrodes were coupled with the first E. coli O157:H7-specific antibody, E. coli O157:H7 intact cells and the second E. coli O157:H7-specific antibody conjugated with horseradish peroxidase (HRP). Hydrogen peroxide and ferrocenedicarboxylic acid (FeDC) were used as the substrate for HRP and mediator, respectively, at a potential +300 mV vs. counter/reference electrode. The response current (RC) of the immunosensing strips could be amplified significantly by 13-nm diameter Au nanoparticles (AuNPs) attached to the working electrode. The results show that the combined effects of AuNPs and FeDC enhanced RC by 13.1-fold. The SPCE immunosensing strips were used to detect E. coli O157:H7 specifically. Concentrations of E. coli O157:H7 from 10(2) to 10(7)CFU/ml could be detected. The detection limit was approximately 6CFU/strip in PBS buffer and 50CFU/strip in milk. The SPCE modified with AuNPs and FeDC has the potential for further applications and provides the basis for incorporating the method into an integrated system for rapid pathogen detection.


Subject(s)
Electrochemistry/instrumentation , Escherichia coli O157/isolation & purification , Food Analysis/instrumentation , Food Contamination/analysis , Food Microbiology , Microelectrodes , Reagent Strips , Biosensing Techniques/instrumentation , Carbon/chemistry , Colony Count, Microbial/instrumentation , Disposable Equipment , Gold/chemistry , Nanoparticles/chemistry , Surface Properties
2.
Anal Bioanal Chem ; 389(5): 1623-31, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17912503

ABSTRACT

A practical approach to reduce the interferences of biochemicals and hematocrit ratio (Hct%) in the determination of whole blood glucose using multiple screen-printed carbon electrode (SPCE) test strips is described. SPCE test strips with and without glucose oxidase [i.e., GOD(+)-SPCEs and GOD(-)-SPCEs] were used and the chronoamperometric currents of test glucose solutions with various spiked uric acid concentrations and Hct% were measured. By establishing the interference relationships between glucose concentrations and uric acid concentrations as well as Hct% values and with appropriate corrections, the whole blood glucose determinations could be made to be more accurate and comparable to those determined by the reference YSI method. Specifically, the use of the DeltaI value, i.e., the current difference between GOD(+)-SPCE and GOD(-)-SPCE measurements, would reduce most of the uric acid/biochemical interferences. An interpolation method was also established to correct for the glucose determinations with Hct% interferences. The Hct% corrections using the interpolation method are especially important and necessary for those blood samples with glucose concentrations higher than 110 mg dL(-1) and Hct% values lower than 35%. This approach should also be applicable to other biochemical determinations using similar electrochemical techniques.


Subject(s)
Blood Glucose/analysis , Electrochemistry/methods , Electrodes , Hematocrit , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...