Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Oral Maxillofac Implants ; 25(5): 901-10, 2010.
Article in English | MEDLINE | ID: mdl-20862403

ABSTRACT

PURPOSE: To evaluate the influence of implant collar geometry on the distribution of stress and strain in the crestal compact bone contiguous to an implant collar for four types of bone under axial and oblique loads. MATERIALS AND METHODS: Finite element models of threaded implants with three kinds of implant collar designs (divergent, straight, and convergent) with their corresponding suprastructures embedded in the posterior mandible were created with ANSYS software. Eight different test conditions incorporating four types of bone (orthotropic and effectively isotropic in part 1 and high and low densities in part 2) under separate 100-N axial and 35.6-degree oblique forces were created to investigate the stress and strain distributions in the crestal compact bone around the implant collars. RESULTS: In all eight conditions, the divergent collar demonstrated the lowest maximum von Mises and principal stresses and strains in the crestal compact bone contiguous to the implant collar, followed by the straight and convergent collars. The oblique load induced higher peak values than the axial load. The orthotropic design amplified and increased the pathologic microstrains and tensile stresses in the crestal compact bone compared to the effectively isotropic design, especially in models with a convergent collar design. In part 2 of the study, the maximum von Mises stresses and strains increased with a decrease in the cancellous bone density. Under oblique loading, the convergent and straight collars showed pathologic microstrain values as well as excessive ultimate tensile stresses in the orthotropic bone model with low-density cancellous bone. CONCLUSIONS: Within the limitations, it was concluded that stress and strain distributions in the adjacent compact bone are influenced by the implant collar design. The divergent implant collar design was associated with the lowest stress and strain concentrations in the crestal compact bone.


Subject(s)
Dental Implants , Dental Prosthesis Design , Dental Stress Analysis , Models, Biological , Alveolar Process/physiology , Computer Simulation , Dental Stress Analysis/methods , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Mandible/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...