Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38822080

ABSTRACT

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Subject(s)
Bcl-2-Like Protein 11 , Cell Differentiation , Dendritic Cells , Homeostasis , Interferon Regulatory Factors , Mice, Inbred C57BL , Transcription Factors , Animals , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Dendritic Cells/metabolism , Dendritic Cells/cytology , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/genetics , Transcription, Genetic , Apoptosis , RNA Polymerase II/metabolism , Cyclin-Dependent Kinase 9/metabolism , Trans-Activators/metabolism , Trans-Activators/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Knockout , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology
3.
Elife ; 122023 Nov 27.
Article in English | MEDLINE | ID: mdl-38011375

ABSTRACT

Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology; however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.


Subject(s)
Gene Expression Regulation , Histone Deacetylases , Mice , Animals , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Cell Differentiation/genetics , Dendritic Cells
4.
Front Neurol ; 14: 1200846, 2023.
Article in English | MEDLINE | ID: mdl-37576008

ABSTRACT

Purpose: Hypertension is an important risk factor for atherosclerotic cerebral small vessel disease (CSVD). Higher blood pressure is associated with a higher CSVD burden and the presence of relevant magnetic resonance imaging (MRI) markers. However, the effect of blood pressure level on CSVD burden and imaging markers including white matter hyperintensity (WHM), lacune, enlarged perivascular spaces (EPVS), and cerebral microbleed (CMB) remains unknown. The purpose of this study was to investigate the correlation between blood pressure level and CSVD burden at different time periods throughout the day. Methods: In total, 144 in-patients with CSVD (66.4 ± 9.8 years, 50% male) were enrolled and underwent brain MRI, and 24-h ambulatory blood pressure was assessed. Patients were categorized into five groups according to their MRI-evaluated total CSVD burden scores (0-4). Spearman's correlation analysis was performed to examine the correlation between blood pressure levels at different time periods and the total CSVD score or the markers of periventricular WMH, deep WMH, lacune, EPVS, and CMB. Results: Of the 144 patients, 83.3% (120/144) harbored one or more CSVD markers of interest. The systolic blood pressure (SBP) of 24-h, daytime, nighttime, and morning differed significantly among the five groups. The SBP levels increased significantly with the total CSVD scores during 24 h (P = 0.018), daytime (P = 0.018), and nighttime (P = 0.035). Spearman's correlation analysis demonstrated that the SBP of 24 h, daytime, nighttime, and morning and the diastolic blood pressure (DBP) of 24 h and morning positively and significantly correlated with the total CSVD score (P < 0.05). A logistic regression analysis indicated that both morning SBP and DBP were independent risk factors for total CSVD burden (OR = 1.13, 95% CI: 1.02-1.23, P = 0.015; OR = 1.19, 95% CI: 1.06-1.33, P = 0.005). Spearman's correlation analysis indicated a significant positive correlation between morning SBP and higher deep WMH Fazekas score (r = 0.296, P < 0.001), EPVS grade in the basal ganglia (r = 0.247, P = 0.003), and the presence of lacune (r = 0.173, P = 0.038) and CMB (r = 0.326, P < 0.001). Morning DBP only correlated positively with the presence of CMB (r = 0.292, P < 0.001). Conclusion: Higher SBP signficantly correlated with total CSVD burden in patients with atherosclerotic CSVD. Early morning blood pressure level is an important indicator to reflect the severity of CSVD patients.

5.
Synth Syst Biotechnol ; 5(2): 103-110, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596520

ABSTRACT

In order to improve the targeting and availability of liposomes to cancer cells, the temperature sensitivity of 1, 2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the pH sensitivity of PASP in PASP-g-C8 are incorporated in a drug delivery system. A composite pH-temperature dual-sensitive liposomes (CPTLPs) was obtained as an efficient drug delivery system. The bionic bilayer is self-assembled by cholesterol/cationic temperature-sensitive lipids as base layer and pH-sensitive octylamine grafted poly aspartic acid (PASP-g-C8) as anchors coated outside. Cytarabine (CYT) was chosen as a model drug. SEM and DLS were used to observe the morphology characteristics of CPTLPs in different micro environment. The results demonstrated that the CPTLPs remained active in both normal (pH7.4 and 37 °C) and tumor tissues (pH 5.0 and 42 °C). As a stable colloidal system, the zeta potential of CPTSLs was -41.6 mV. In vitro drug-release experiments, the CTY encapsulated dual-sensitive liposomes, CPTSLs(+), not only have significant pH-temperature sensitivity but have more prolonged release in vitro than control groups. MTT tests results indicated that the cell apoptotic effects induced by CPTSLs(+) were nearly 30% higher than the naked drug CTY in HepG2 cells, and 20% lower apoptotic in vero cells. The CPTSLs(+) sustained a stable emulsion form, less toxic effects on normal cells, and exhibited a good pH-temperature sensitivity, thus expected to be a promising tumor targeting drug delivery.

SELECTION OF CITATIONS
SEARCH DETAIL
...