Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1371850, 2024.
Article in English | MEDLINE | ID: mdl-38633707

ABSTRACT

Rhizoctonia solani Kühn, a plant pathogenic fungus that can cause diseases in multiple plant species is considered one of the common and destructive pathogens in many crops. This study investigated the action of antimycin A1, which was isolated from Streptomyces AHF-20 found in the rhizosphere soil of an ancient banyan tree, on Rhizoctonia solani and its mechanism. The inhibitory effect of antimycin A1 on R. solani was assessed using the comparative growth rate method. The results revealed that antimycin A1 exhibited a 92.55% inhibition rate against R. solani at a concentration of 26.66 µg/mL, with an EC50 value of 1.25 µg/mL. To observe the impact of antimycin A1 on mycelial morphology and ultrastructure, the fungal mycelium was treated with 6.66 µg/mL antimycin A1, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed. SEM analysis demonstrated that antimycin A1 caused mycelial morphology to become stripped, rough, and folded. The mycelium experienced severe distortion and breakage, with incomplete or locally enlarged ends, shortened branches, and reduced numbers. TEM observation revealed thickened cell walls, indistinct organelle boundaries, swollen mitochondria, exosmotic substances in vesicles, slow vesicle fusion, and cavitation. Real-time quantitative PCR and enzyme activity assays were conducted to further investigate the impact of antimycin A1 on mitochondria. The physiological and biochemical results indicated that antimycin A1 inhibited complexes III and IV of the mitochondrial electron transport chain. RT-PCR analysis demonstrated that antimycin A1 controlled the synthesis of relevant enzymes by suppressing the transcription levels of ATP6, ATP8, COX3, QCR6, CytB, ND1, and ND3 genes in mitochondria. Additionally, a metabolomic analysis revealed that antimycin A1 significantly impacted 12 metabolic pathways. These pathways likely experienced alterations in their metabolite profiles due to the inhibitory effects of antimycin A1. Consequently, the findings of this research contribute to the potential development of novel fungicides.

2.
BMC Cancer ; 23(1): 586, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365518

ABSTRACT

BACKGROUND: Histone acetyltransferases (HATs) of the MYST family are associated with a variety of human cancers. However, the relationship between MYST HATs and their clinical significance in kidney renal clear cell carcinoma (KIRC) has not yet been evaluated. METHODS: The bioinformatics method was used to investigate the expression patterns and prognostic value of MYST HATs. Western blot was used to detect the expression of MYST HATs in KIRC. RESULTS: The expression levels of MYST HATs except KAT8 (KAT5, KAT6A, KAT6B, and KAT7) were significantly reduced in KIRC tissues compared to normal renal tissues, and the western blot results of the KIRC samples also confirmed the result. Reduced expression levels of MYST HATs except KAT8 were significantly associated with high tumor grade and advanced TNM stage in KIRC, and showed a significant association with an unfavorable prognosis in patients with KIRC. We also found that the expression levels of MYST HATs were closely related to each other. Subsequently, gene set enrichment analysis showed that the function of KAT5 was different from that of KAT6A, KAT6B and KAT7. The expression levels of KAT6A, KAT6B and KAT7 had significant positive correlations with cancer immune infiltrates such as B cells, CD4+ T cells and CD8+ T cells. CONCLUSIONS: Our results indicated that MYST HATs, except KAT8, play a beneficial role in KIRC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Histone Acetyltransferases/genetics , CD8-Positive T-Lymphocytes , Carcinoma, Renal Cell/genetics , Kidney , Kidney Neoplasms/genetics
3.
Apoptosis ; 28(3-4): 525-538, 2023 04.
Article in English | MEDLINE | ID: mdl-36652130

ABSTRACT

The natural product dehydrocurvularin (DSE2) is a fungal-derived macrolide with potent anticancer activity, but the mechanism is still unclear. We found that DSE2 effectively inhibited the growth of gastric cancer cells and induced the apoptosis by activating Poly(ADP-ribose) polymerase 1 (PARP-1) and caspase-3. Pharmacological inhibition and genetic knockdown with PARP-1 or caspase-3 suppressed DSE2-induced apoptosis. PARP-1 was previously reported to be cleaved into fragments during apoptosis. However, PARP-1 was barely cleaved in DSE2-induced apoptosis. DSE2 induced PARP-1 activation as indicated by rapid depletion of NAD+ and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). Interestingly, the PARP-1 inhibitor (Olaparib) attenuated the cytotoxicity of DSE2. Moreover, the combination of Olaparib and Z-DEVD-FMK (caspase-3 inhibitor) further reduced the cytotoxicity. It has been shown that PARP-1 activation triggers cytoplasm-nucleus translocation of apoptosis-inducing factor (AIF). Caspase-3 inhibitors inhibited PARP-1 activation and suppressed PARP-1-induced AIF nuclear translocation. These results indicated that DSE2-induced caspase-3 activation may occur before PARP-1 activation. The ROS inhibitor, N-acetyl-cysteine, significantly inhibited the activation of caspase-3 and PARP-1, indicating that ROS overproduction contributed to DSE2-induced apoptosis. Using an in vivo approach, we further found that DSE2 significantly inhibited gastric tumor growth and promoted translocation of AIF to the nucleus. In conclusion, DSE2 induces gastric cell apoptosis by activating caspase-3 and PARP-1, and shows potent antitumor activity against human gastric carcinoma in vitro and in vivo.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Humans , Apoptosis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Antineoplastic Agents/pharmacology
4.
Molecules ; 20(12): 22137-45, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26690398

ABSTRACT

At the present paper, an analytical method based on temperature controlled solid-liquid extraction (TC-SLE) utilizing a synthesized ionic liquid, (N-butylpyridinium hexafluorophosphate, [BPy]PF6), as solid solvent and phenanthroline (PT) as an extractant was developed to determine micro levels of Fe(2+) in tea by PT spectrophotometry. TC-SLE was carried out in two continuous steps: Fe(2+) can be completely extracted by PT-[BPy]PF6 or back-extracted at 80 °C and the two phases were separated automatically by cooling to room temperature. Fe(2+), after back-extraction, needs 2 mol/L HNO3 as stripping agent and the whole process was determined by PT spectrophotometry at room temperature. The extracted species was neutral Fe(PT)mCl2 (m = 1) according to slope analysis in the Fe(2+)-[BPy]PF6-PT TC-SLE system. The calibration curve was Y = 0.20856X - 0.000775 (correlation coefficient = 0.99991). The linear calibration range was 0.10-4.50 µg/mL and the limit of detection for Fe(2+) is 7.0 × 10(-2) µg/mL. In this method, the contents of Fe(2+) in Tieguanyin tea were determined with RSDs (n = 5) 3.05% and recoveries in range of 90.6%-108.6%.


Subject(s)
Iron/analysis , Liquid-Liquid Extraction/methods , Phenanthrolines/chemistry , Solid Phase Extraction/methods , Spectrophotometry/methods , Tea/chemistry , Calibration , Cations, Divalent , Humans , Ionic Liquids/chemistry , Limit of Detection , Nitric Acid/chemistry , Pyridinium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...