Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871652

ABSTRACT

The budding yeast Kluyveromyces lactis has emerged as a promising microbial chassis in industrial biotechnology. However, a lack of efficient molecular genetic manipulation tools and strategies has hindered the development of K. lactis as a biomanufacturing platform. In this study, we developed and applied a CRISPR/Cas9-based genome editing method to K. lactis. Single-gene editing efficiency was increased to 80% by disrupting the nonhomologous end-joining-related gene KU80 and performing a series of process optimizations. Subsequently, the CRISPR/Cas9 system was explored based on different sgRNA delivery modes for simultaneous multigene editing. With the aid of the color indicator, the editing efficiencies of two and three genes reached 73.3 and 36%, respectively, in the KlΔKU80 strain. Furthermore, the CRISPR/Cas9 system was used for multisite integration to enhance lactase production and combinatorial knockout of TMED10 and HSP90 to characterize the extracellular secretion of lactase in K. lactis. Generally, genome editing is a powerful tool for constructing K. lactis cell factories for protein and chemical production.

2.
Synth Syst Biotechnol ; 8(1): 168-175, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36733311

ABSTRACT

Lactase is a member of the ß-galactosidase family of enzymes that can hydrolyze lactose into galactose and glucose. However, extracellular lactase production was still restricted to the process of cell lysis. In this study, lactase-producing Kluyveromyces lactis JNXR-2101 was obtained using a rapid and sensitive method based on the fluorescent substrate 4-methylumbelliferyl-ß-d-galactopyranoside. The purified enzyme was identified as a neutral lactase with an optimum pH of 9. To facilitate extracellular production of lactase, a putative mannoprotein KLLA0_E01057g of K. lactis was knocked out. It could effectively promote cell wall degradation and lactase production after lyticase treatment, which showed potential on other extracellular enzyme preparation. After optimizing the fermentation conditions, the lactase yield from mannoprotein-deficient K. lactis JNXR-2101ΔE01057g reached 159.62 U/mL in a 5-L fed-batch bioreactor.

SELECTION OF CITATIONS
SEARCH DETAIL
...