Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 579: 112073, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37774938

ABSTRACT

Defects in migration and invasion caused by dysregulation of trophoblastic epithelial-mesenchymal transformation (EMT) play a vital role in preeclampsia (PE). We have previously shown that circTNRC18 inhibits the migration and EMT of trophoblasts; however, its role in PE remains unknown. Herein, we demonstrate that circTNRC18 interacts with an RNA-binding protein, lin-28 homolog A (LIN28A), and this interaction is enhanced in PE placental tissue. LIN28A overexpression suppresses circTNRC18-mediated inhibition of trophoblast migration, invasion, and EMT, whereas LIN28A knockdown promotes them. The intracellular distribution of LIN28A is regulated by circTNRC18, where it promotes the expression of insulin-like growth factor II by stabilizing its mRNA. circTNRC18 also promotes complex formation between GATA-binding factor 1 (GATA1) and sine oculis homeobox 1 (SIX1) by inhibiting LIN28A-GATA1 interaction. GATA1-SIX1 promotes transcription of grainyhead-like protein 2 homolog and circTNRC18-mediated regulation of cell migration and invasion. Moreover, blocking circTNRC18-LIN28A interaction with antisense nucleotides alleviates PE in a mouse model of reduced uterine perfusion pressure. Thus, targeting the circTNRC18-LIN28A regulatory axis may be a novel PE treatment method.


Subject(s)
MicroRNAs , Pre-Eclampsia , Animals , Female , Humans , Mice , Pregnancy , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Trophoblasts/metabolism
2.
Front Neurol ; 12: 598554, 2021.
Article in English | MEDLINE | ID: mdl-34367042

ABSTRACT

Objective: This study examined the activation difference of muscles innervated by cervical cord 5-6 (C5-C6) and cervical cord 8- thoracic cord 1 (C8-T1) in upper limb flexion synergy after stroke. Methods: Surface electromyography (sEMG) signals were collected during elbow flexion in stroke patients and healthy controls. The study compared normalized activation of two pairs of muscles that could cause similar joint movement but which dominated different spinal cord segments (clavicular part of the pectoralis major, PC vs. Sternocostal part of the pectoralis major, PS; Flexor carpi radialis, FCR vs. Flexor carpi ulnaris, FCU). In each muscle pair, one muscle was innervated by the same spinal cord segment (C5-C6), dominating the elbow flexion and the other was not. The comparison of the activation of the same muscle between patients and healthy controls was undertaken after standardization based on the activation of the biceps brachii in elbow flexion. Results: There was no difference between the PC and PS's normalized activation in healthy controls while the PC's normalized activation was higher than PS in stroke patients during elbow flexion. Similarly, there was no significant difference in normalized activation between FCR and FCU in healthy controls, and the same is true for stroke patients. However, the standardized activation of both FCR and FCU in stroke patients was significantly lower than that in healthy controls. Conclusion: After stroke, the activation of the distal muscles of the upper limb decreased significantly regardless of the difference of spinal cord segments; while the activation of the proximal muscles innervated by the same spinal cord segment (C5-C6) dominating the elbow flexion showed higher activation during flexion synergy. The difference in muscle activation based on spinal cord segments may be the reason for the stereotyped joint movement of upper limb flexion synergy.

3.
Front Neurol ; 11: 544912, 2020.
Article in English | MEDLINE | ID: mdl-33329299

ABSTRACT

Objective: To study differential post-stroke changes of excitability of spinal motor neurons innervating a group of antagonist muscles of ankle and their effects on foot inversion. Methods: F waves in tibialis anterior (TA) and peroneus muscles (PN) were recorded. The condition of spasticity and foot inversion in stroke patients were also evaluated. The differences of F wave parameters between patients and healthy controls (HC), as well as TA and PN, were investigated. Results: There were natural differences in the persistence of the F waves (Fp) and F/M amplitude ratio (F/M) between TA and PN in HC. Stroke patients showed significantly higher F/M in TA and PN, while there was no difference in Fp comparing to HC. The natural differences in F wave parameters between TA and PN were differentially retained after stroke. The natural difference of the two muscles in Fp remained unchanged and the F/M difference disappeared in those without spasticity or foot inversion, while the Fp difference disappeared and the F/M difference remained in those with spasticity or foot inversion. Conclusion: Based on the natural difference of the number and size of spinal motor neurons innervating TA and PN, their excitability may change differently according to the severity of the stroke, which may be the reason of foot inversion.

4.
RNA Biol ; 16(11): 1565-1573, 2019 11.
Article in English | MEDLINE | ID: mdl-31354028

ABSTRACT

Dysfunctions of epithelial-mesenchymal transition (EMT)-regulated cell migration and invasion have been involved in the pathogenesis of pre-eclampsia (PE). However, the role of circRNAs in EMT of PE has not been widely investigated. In this study, we identified that circTNRC18 was upregulated in PE placentas compared with normal pregnancy placentas. Moreover, circTNRC18 negatively regulated trophoblast cell migration and EMT. Overexpression of circTNRC18 reduced while depletion of circTNRC18 enhanced trophoblast cell migration and EMT. Mechanistically, circTNRC18 sponged miR-762 contributed to inhibit miR-762 activity and elevated EMT-related transcriptional factor Grhl2 protein level. miR-762 expression was lower in PE placentas and played a promoting role in trophoblast cell migration and EMT. In contrast, Grhl2 was highly expressed in PE placentas. Furthermore, we confirmed that upregulation of Grhl2 by circ-TNRC18-induced inhibition of miR-762 led to trophoblast cell migration and EMT. In conclusions, circTNRC18/miR-762/Grhl2 axis plays a key role in trophoblast cell migration and EMT. circTNRC18/miR-762/Grhl2 axis may be a potential therapeutic target in PE.


Subject(s)
DNA-Binding Proteins/metabolism , MicroRNAs/genetics , Pre-Eclampsia/genetics , RNA, Circular/genetics , Transcription Factors/metabolism , Trophoblasts/cytology , Cell Line , Cell Movement , DNA-Binding Proteins/genetics , Epithelial-Mesenchymal Transition , Female , Humans , Pre-Eclampsia/metabolism , Pregnancy , Transcription Factors/genetics , Trophoblasts/metabolism , Up-Regulation
5.
Fish Physiol Biochem ; 34(3): 235-43, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18665461

ABSTRACT

Two cDNA libraries from Takifugu rubripes spermatozoa and eggs were constructed and a total of 620 expressed sequence tag (EST) clones were generated from the two libraries: 300 clones are from the spermatozoa library and 320 clones are from the eggs library. The most abundant cDNA clones in the two libraries were identified. A total of 207 'contigs' (or single) EST clones were found to share significant sequence identity with known sequences in the GenBank database, representing at least 51 different genes. In order to understand the two types of germ cells further, the expression profiles of the identified clones in these cDNA libraries were analyzed. Furthermore, the presence of specific messenger RNAs in the spermatozoa and eggs has been demonstrated with BLAST analysis; the spermatozoa and egg library can supply unique and novel cDNA sequences in the Takifugu rubripes EST project. Another aim of this study is to identify cDNA clones that can be used as molecular markers for the analysis of the spermatogenesis and oogenesis in Takifugu rubripes. Six potential clones (S1-3 from spermatozoa and E1-3 from eggs) were selected to analyze their expression patterns by reverse transcription (RT)-PCR analyses. Half of these showed a specific expression in the expected tissue. Two of the clones were found by RT-PCR and in situ hybridization to be expressed specifically in the testis or ovary, and they maybe suitable molecular markers for the analysis of spermatogenesis and oogenesis.


Subject(s)
Expressed Sequence Tags , Gene Expression Profiling , Ovum/metabolism , Spermatozoa/metabolism , Takifugu/genetics , Animals , Female , Gene Library , Male , Ovary/cytology , Ovary/metabolism , Testis/cytology , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...