Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804973

ABSTRACT

Recovering height information from a single aerial image is a key problem in the fields of computer vision and remote sensing. At present, supervised learning methods have achieved impressive results, but, due to domain bias, the trained model cannot be directly applied to a new scene. In this paper, we propose a novel semi-supervised framework, StyHighNet, for accurately estimating the height of a single aerial image in a new city that requires only a small number of labeled data. The core is to transfer multi-source images to a unified style, making the unlabeled data provide the appearance distribution as additional supervision signals. The framework mainly contains three sub-networks: (1) the style transferring sub-network maps multi-source images into unified style distribution maps (USDMs); (2) the height regression sub-network, with the function of predicting the height maps from USDMs; and (3) the style discrimination sub-network, used to distinguish the sources of USDMs. Among them, the style transferring sub-network shoulders dual responsibilities: On the one hand, it needs to compute USDMs with obvious characteristics, so that the height regression sub-network can accurately estimate the height maps. On the other hand, it is necessary that the USDMs have consistent distribution to confuse the style discrimination sub-network, so as to achieve the goal of domain adaptation. Unlike previous methods, our style distribution function is learned unsupervised, thus it is of greater flexibility and better accuracy. Furthermore, when the style discrimination sub-network is shielded, this framework can also be used for supervised learning. We performed qualitatively and quantitative evaluations on two sets of public data, Vaihingen and Potsdam. Experiments show that the framework achieved superior performance in both supervised and semi-supervised learning modes.

2.
IEEE Trans Vis Comput Graph ; 24(4): 1554-1563, 2018 04.
Article in English | MEDLINE | ID: mdl-29543173

ABSTRACT

Displays that can portray environments that are perceivable from multiple views are known as multiscopic displays. Some multiscopic displays enable realistic perception of 3D environments without the need for cumbersome mounts or fragile head-tracking algorithms. These automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (Iightfield). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. In this paper, we propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We propose the use of a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle.

3.
IEEE Trans Image Process ; 24(7): 2182-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25823036

ABSTRACT

This paper presents a unified variational formulation for joint object segmentation and stereo matching, which takes both accuracy and efficiency into account. In our approach, depth-map consists of compact objects, each object is represented through three different aspects: 1) the perimeter in image space; 2) the slanted object depth plane; and 3) the planar bias, which is to add an additional level of detail on top of each object plane in order to model depth variations within an object. Compared with traditional high quality solving methods in low level, we use a convex formulation of the multilabel Potts Model with PatchMatch stereo techniques to generate depth-map at each image in object level and show that accurate multiple view reconstruction can be achieved with our formulation by means of induced homography without discretization or staircasing artifacts. Our model is formulated as an energy minimization that is optimized via a fast primal-dual algorithm, which can handle several hundred object depth segments efficiently. Performance evaluations in the Middlebury benchmark data sets show that our method outperforms the traditional integer-valued disparity strategy as well as the original PatchMatch algorithm and its variants in subpixel accurate disparity estimation. The proposed algorithm is also evaluated and shown to produce consistently good results for various real-world data sets (KITTI benchmark data sets and multiview benchmark data sets).

SELECTION OF CITATIONS
SEARCH DETAIL
...