Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 182: 116001, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32544733

ABSTRACT

Nitrogen removal with energy recovery through denitrification dependent N2O production is garnering recent attention due to its cost advantages. The most effective current method requires alternating COD and nitrite to achieve high N2O production making it incompatible with typical wastewaters and consequently difficult to use in most settings. The work described here introduces a robust and highly efficient N2O recovery approach which has the potential to work with wastewaters containing COD and nitrite simultaneously. This method relies on low pH incubation and inert gas sparging (IGS) to shift a community of mainly N2 producing nitrite denitrifiers to a community that accumulates N2O when incubated in the absence of IGS. Before experiencing IGS, samples from activated sludge incubated at a pH of 4.5 and 6.0 only achieved a maximum N2O production efficiency (PE_N2O) of ∼26%. After IGS the PE_N2O values increased to ∼97.5% and ∼80.2% for samples from these same pH 4.5 and pH 6.0 reactors, respectively. IGS did not lead to N2O production in a pH 7.5 bioreactor. Meta-omics analysis revealed that IGS resulted in an increase in bacteria utilizing the clade I nitrous oxide reductase (nosZI) relative to bacteria utilizing the clade II nitrous oxide reductase (nosZII). This likely results from IGS flushing out N2O leaving nitrite as the principal nitrogen oxide available for respiration, favoring nosZI utilizing bacteria which are more likely to be complete denitrifiers. Metatranscriptomic analysis suggested that the high PE_N2O values that occurred after stopping IGS result from the NO generated by chemodenitrification accumulating to levels that inactivate [4Fe:4S] clusters in the NosR protein essential for N2O reduction in the nosZI denitrifiers. This study provides an efficient and straightforward method for N2O recovery, widening the options for energy recovery from nitrogen-based wastes.


Subject(s)
Nitrites , Nitrous Oxide , Bioreactors , Denitrification , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...