Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994762

ABSTRACT

Age­related macular degeneration (AMD) is an ocular disease that threatens the visual function of older adults worldwide. Key pathological processes involved in AMD include oxidative stress, inflammation and choroidal vascular dysfunction. Retinal pigment epithelial cells and Müller cells are most susceptible to oxidative stress. Traditional herbal medicines are increasingly being investigated in the field of personalized medicine in ophthalmology. Triptonide (Tn) is a diterpene tricyclic oxide, the main active ingredient in the extract from the Chinese herbal medicinal plant Tripterygium wilfordii, and is considered an effective immunosuppressant and anti­inflammatory drug. The present study investigated the potential beneficial role of Tn in retinal oxidative damage in order to achieve personalized treatment for early AMD. An oxidative stress model of retinal cells induced by H2O2 and a retinal injury model of mice induced by light and N­Methyl­D­aspartic acid were constructed. In vitro, JC­1 staining, flow cytometry and apoptosis assay confirmed that low concentrations of Tn effectively protected retinal cells from oxidative damage, and reverse transcription­quantitative PCR and western blotting analyses revealed that Tn reduced the expression of retinal oxidative stress­related genes and inflammatory factors, which may depend on the PI3K/AKT/mTOR­induced Nrf2 signaling pathway. In vivo, by retinal immunohistochemistry, hematoxylin and eosin staining and electroretinogram assay, it was found that retinal function and structure improved and choroidal neovascularization was significantly inhibited after Tn pretreatment. These results suggested that Tn is an efficient Nrf2 activator, which can be expected to become a new intervention for diseases such as AMD, to inhibit retinal oxidative stress damage and pathological neovascularization.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Retina , Signal Transduction , Oxidative Stress/drug effects , Animals , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Mice , Retina/drug effects , Retina/metabolism , Retina/pathology , Triterpenes/pharmacology , Male , Apoptosis/drug effects , Humans , Mice, Inbred C57BL , Protective Agents/pharmacology , Cell Line , Hydrogen Peroxide
2.
J Biomed Res ; 38(3): 256-268, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38387889

ABSTRACT

Retinal neurodegenerative disease is a leading cause of blindness among the elderly in developed countries, including glaucoma, diabetic retinopathy, traumatic optic neuropathy and optic neuritis, etc. The current clinical treatment is not very effective. We investigated indirubin, one of the main bioactive components of the traditional Chinese medicine Danggui Longhui Pill, in the present study for its role in retinal neurodegeneration. Indirubin exhibited no detectable tissue toxicity in vivo or cytotoxicity in vitro. Moreover, indirubin improved visual function and ameliorated retinal neurodegeneration in mice after optic nerve crush injury in vivo. Furthermore, indirubin reduced the apoptosis of retinal ganglion cells induced by oxidative stress in vitro. In addition, indirubin significantly suppressed the increased production of intracellular reactive oxygen species and the decreased activity of superoxide dismutase induced by oxidative stress. Mechanically, indirubin played a neuroprotective role by regulating the PI3K/AKT/BAD/BCL-2 signaling. In conclusion, indirubin protected retinal ganglion cells from oxidative damage and alleviated retinal neurodegeneration induced by optic nerve crush injury. The present study provides a potential therapeutic medicine for retinal neurodegenerative diseases.

3.
Sci Rep ; 13(1): 12754, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550343

ABSTRACT

Retinal pathological neovascularization involves endothelial cells, pericytes, photoreceptor cells, ganglion cells, and glial cells, whose roles remain unclear. Using the Scissor algorithm, we found that microglia are associated with formation of fibrovascular membranes and can promote pathological neovascularization. GO and KEGG results showed that PI3K-AKT pathway activation in retinal microglia was associated with pathological neovascularization, and PIK3IP1 was associated with retinal microglia activation. Then we used PCR, Western blot and Elisa techniques to confirm that the expression of VEGFA, FGF2, HGFα and MMP9 was increased in microglia after Lipopolysaccharide (LPS) induction. We also used cell flow cytometry and OIR models to verify the role of PI3K-AKT pathway and PIK3IP1 in microglia. Targeting of PIK3IP1 regulated the activation of the PI3K-AKT pathway in microglia, microglia function activation, and pro-angiogenic effects. These findings reveal the role of M1-type microglia in pathological neovascularization and suggests that targeting the PI3K-AKT pathway in microglia may be a new strategy for treating retinal pathological neovascularization.


Subject(s)
Proto-Oncogene Proteins c-akt , Retinal Neovascularization , Humans , Down-Regulation , Endothelial Cells/metabolism , Microglia/metabolism , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Retinal Neovascularization/pathology
4.
Sci Rep ; 13(1): 10439, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369771

ABSTRACT

Choroidal neovascularization (CNV) occurs in neovascular age-related macular degeneration (AMD) and often leads to permanent visual impairment. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is the gold standard for the treatment of CNV. However, anti-VEGF treatment did not always cause vision improvement and sometimes had detrimental effects on normal retinal tissues. Herein, we identified a novel retinoic acid drug, EYE-502, which had great therapeutic effects on CNV. Administration of EYE-502 could inhibit VEGF-induced dysfunction of endothelial cells (ECs) and reduce platelet-derived growth factor (PDGF)-induced recruitment of pericytes to ECs in vitro. Administration of EYE-502 could reduce the area of choroidal sprouting and laser-induced CNV, exhibiting similar anti-angiogenic effects as aflibercept. Moreover, administration of EYE-502 could reduce pericyte coverage in the sprouting vessels and choroidal neovascularization. Mechanistically, EYE-502 primarily bound to retinoic acid receptors (RARs) and exerted the anti-angiogenic effects by targeting ECs and pericytes via affecting the activation of Wnt/ß-catenin and PDGF/PDGFR/PI3K/Akt signaling. Taken together, this study reports a novel retinoic acid drug, EYE-502, which can exert the anti-angiogenic effects by simultaneous targeting of ECs and pericytes.


Subject(s)
Choroidal Neovascularization , Pericytes , Humans , Pericytes/metabolism , Endothelial Cells/metabolism , Pharmaceutical Preparations , Tretinoin/pharmacology , Tretinoin/therapeutic use , Phosphatidylinositol 3-Kinases , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Platelet-Derived Growth Factor/pharmacology , Intravitreal Injections
5.
J Transl Med ; 21(1): 412, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355654

ABSTRACT

BACKGROUND: Myopia has emerged as a major public health concern globally, which is tightly associated with scleral extracellular matrix (ECM) remodeling and choroidal vasculopathy. Choroidal vasculopathy has gradually been recognized as a critical trigger of myopic pathology. However, the precise mechanism controlling choroidal vasculopathy remains unclear. Transfer RNA-derived fragments (tRFs) are known as a novel class of small non-coding RNAs that plays important roles in several biological and pathological processes. In this study, we investigated the role of tRF-22-8BWS72092 (tRF-22) in choroidal vasculopathy and myopia progression. METHODS: The tRF-22 expression pattern under myopia-related stresses was detected by qRT-PCR. MTT assays, EdU incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of tRF-22 in choroidal endothelial cell function in vitro. Isolectin B4 staining and choroidal sprouting assay ex vivo were conducted to detect the role of tRF-22 in choroidal vascular dysfunction in vivo. Immunofluorescent staining, western blot assays and ocular biometric parameters measurement were performed to examine whether altering tRF-22 expression in choroid affects scleral hypoxia and ECM remodeling and myopia progression in vivo. Bioinformatics analysis and luciferase activity assays were conducted to identify the downstream targets of tRF-22. RNA-sequencing combined with m6A-qPCR assays were used to identify the m6A modified targets of METTL3. Gain-of-function and Loss-of-function analysis were performed to reveal the mechanism of tRF-22/METTL3-mediated choroidal vascular dysfunction. RESULTS: The results revealed that tRF-22 expression was significantly down-regulated in myopic choroid. tRF-22 overexpression alleviated choroidal vasculopathy and retarded the progression of myopia in vivo. tRF-22 regulated choroidal endothelial cell viability, proliferation, migration, and tube formation ability in vitro. Mechanistically, tRF-22 interacted with METTL3 and blocked m6A methylation of Axin1 and Arid1b mRNA transcripts, which led to increased expression of Axin1 and Arid1b. CONCLUSIONS: Our study reveals that the intervention of choroidal vasculopathy via tRF-22-METTL3- Axin1/Arid1b axis is a promising strategy for the treatment of patients with myopic pathology.


Subject(s)
Myopia , RNA, Transfer , Humans , Up-Regulation/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Methylation , Myopia/genetics , Choroid/metabolism , Methyltransferases/genetics
6.
Exp Eye Res ; 227: 109385, 2023 02.
Article in English | MEDLINE | ID: mdl-36638858

ABSTRACT

Choroidal neovascularization (CNV) is a typical pathological feature of neovascular age-related macular degeneration and has become a major cause of vision loss in the elderly. Current therapies require repeated intraocular injections of anti-VEGF drugs by inhibiting endothelial angiogenic effects, which is painful and may cause adverse effects on normal vascular and neuronal functions. Herein, we designed a novel retinoid drug, EYE-101, determined its therapeutic effects on CNV, and clarified the anti-angiogenic mechanism. The results show that administration of EYE-101 did not cause obvious cytotoxicity and ocular tissue toxicity at the concentrations less than 5 µM. Topical administration of EYE-101 could reduce choroidal sprouting, suppress laser-induced CNV formation, and decrease pericyte coverages on ocular vessels. Administration of EYE-101 also suppressed endothelial cell proliferation, migration, and tube formation and reduced pericyte proliferation, migration, recruitment towards endothelial cells. EYE-101 exerted its anti-angiogenic effects by targeting endothelial cells and pericytes via antagonizing Wnt/ß-catenin signaling and PDGF signaling. Thus, EYE-101 administration may offer an"one stone and two birds" strategy for the prevention and treatment of ocular neovascular disorders.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Humans , Aged , Pharmaceutical Preparations , Endothelial Cells , Retinoids/therapeutic use , Vascular Endothelial Growth Factor A/pharmacology , Choroidal Neovascularization/pathology , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Macular Degeneration/drug therapy
7.
Front Cell Dev Biol ; 9: 761350, 2021.
Article in English | MEDLINE | ID: mdl-34901006

ABSTRACT

Uveal melanoma is the most common primary intraocular tumor with a poor prognosis. Currently, treatment for UVM is limited, and the development of drug resistance and tumor recurrence are common. Therefore, it is important to identify new prognostic biomarkers of UVM and explore their role in the tumor microenvironment. Pyroptosis is a way of cell programmed death, and related research is in full throttle. However, the role of pyroptosis in UVM is unclear. In this study, we constructed the prognosis model of pyroptosis-related genes of UVM. This model can accurately guide the prognosis of UVM, and different groups differ in immune infiltration. We further verified our results in cell experiments. To some extent, our study can provide new ideas for the diagnosis and treatment of UVM.

8.
Nanotechnology ; 31(34): 345705, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32392541

ABSTRACT

Mesoporous silica nanoparticles (MSNs) can be designed to effectively load, protect, and control the release of pesticides. In this study, emulsion-solvent evaporation was used to fabricate abamectin-loaded MSNs. Our method could deliver abamectin in the process of MSN self-assembly, resulting in simple operation, short preparation period, and outstanding drug carrying capacity. The characteristics of abamectin-loaded MSNs, including morphology, loading content, stability against photolysis, controlled release behavior, and toxicological effect, were systematically investigated. Abamectin-loaded MSNs were successfully produced, having spherical shape, rough surface, uniform particle sizes, typically hollow structure, high loading efficiency (44.8%), excellent photodegradation-reducing ability, and controlled-release properties. The biological activity survey for abamectin-loaded MSNs showed excellent toxicological properties against Plutella xylostella larvae, and maintained biological activity until the 15th day, with 70% mortality of the target insect. The results of this study are beneficial for the development of a delivery system for the rational and effective usage of pesticides.


Subject(s)
Insecticides/pharmacology , Ivermectin/analogs & derivatives , Moths/drug effects , Silicon Dioxide/chemistry , Animals , Drug Carriers/chemistry , Drug Liberation , Drug Stability , Emulsions/chemistry , Insecticides/chemistry , Ivermectin/chemistry , Ivermectin/pharmacology , Larva/drug effects , Moths/growth & development , Nanoparticles , Particle Size , Porosity , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...