Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(6): e2305655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37771195

ABSTRACT

Na2 Ti3 O7 is considered one of the most promising anode materials for sodium ion batteries due to its superior safety, environmental friendliness, and low manufacturing cost. However, its structural stability and reaction mechanism still have not been fully explored. As the electron beam irradiation introduces a similar impact on the Na2 Ti3 O7 anode as the extraction of Na+ ions during the battery discharge process, the microstructure evolution of the materials is investigated by advanced electron microscopy techniques at the atomic scale. Anisotropic amorphization is successfully observed. Through the integrated differential phase contrast-scanning transmission electron microscopy technique and density functional theory calculation, a phase transition pathway involving a new phase, Na2 Ti24 O49 , is proposed with the reduction of Na atoms. Additionally, it is found that the amorphization is dominated by the surface energy and electron dose rate. These findings will deepen the understanding of structural stability and deintercalation mechanism of the Na2 Ti3 O7 anode, providing new insight into exploring the failure mechanism of electrode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...