Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinspir Biomim ; 18(2)2023 02 07.
Article in English | MEDLINE | ID: mdl-36669204

ABSTRACT

Penguins have evolved excellent swimming skills as diving birds, benefiting from their agile wings. This paper experimentally analyzes the effects of the wing sweepback angle on thrust generation using a robotic penguin wing. A developed wing mechanism that can realize penguin-like flapping and feathering motion was used for actuating five alternative wing models, with different sweepback angles ranging from 0° to 50°. Force measurements under a steady water flow were conducted for both fixed and flapping states for all wing models. The results showed that small sweepback angles of 30° or less in the fixed state caused a steep lift curve and a moderate sweepback angle of 30° produced the largest lift-to-drag ratio. In the flapping state, the smaller sweepback wings generated a larger net thrust for the same wing motion, whereas the larger-sweepback wings produced more thrust under the same Strouhal number. The findings also revealed that larger sweepback wings more easily achieve the maximum net thrust in terms of less angle-of-attack control. In contrast, the hydrodynamic efficiency was not greatly affected by the sweepback. Regardless of the sweepback, the trend of the efficiency increasing with increasing flow speed indicates that the penguin wings can be more suitable for high-speed locomotion for higher hydrodynamic efficiency.


Subject(s)
Robotic Surgical Procedures , Spheniscidae , Animals , Flight, Animal , Models, Biological , Mechanical Phenomena , Wings, Animal , Biomechanical Phenomena
2.
J Exp Biol ; 224(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34553753

ABSTRACT

Penguins are adapted to underwater life and have excellent swimming abilities. Although previous motion analyses revealed their basic swimming characteristics, the details of the 3D wing kinematics, wing deformation and thrust generation mechanism of penguins are still largely unknown. In this study, we recorded the forward and horizontal swimming of gentoo penguins (Pygoscelis papua) at an aquarium with multiple underwater action cameras and then performed a 3D motion analysis. We also conducted a series of water tunnel experiments with a 3D printed rigid wing to obtain lift and drag coefficients in the gliding configuration. Using these coefficients, the thrust force during flapping was calculated in a quasi-steady manner, where the following two wing models were considered: (1) an 'original' wing model reconstructed from 3D motion analysis including bending deformation and (2) a 'flat' wing model obtained by flattening the original wing model. The resultant body trajectory showed that the penguin accelerated forward during both upstroke and downstroke. The motion analysis of the two wing models revealed that considerable bending occurred in the original wing, which reduced its angle of attack during the upstroke in particular. Consequently, the calculated stroke-averaged thrust was larger for the original wing than for the flat wing during the upstroke. In addition, the propulsive efficiency for the original wing was estimated to be 1.8 times higher than that for the flat wing. Our results unveil a detailed mechanism of lift-based propulsion in penguins and underscore the importance of wing bending.


Subject(s)
Spheniscidae , Animals , Biomechanical Phenomena , Flight, Animal , Hydrodynamics , Models, Biological , Swimming , Wings, Animal
SELECTION OF CITATIONS
SEARCH DETAIL