Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Soft Matter ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38894642

ABSTRACT

The critical adsorption of end-grafted active polymer chains on an attractive surface is studied using Langevin dynamics simulations. The active polymers are composed of an active Langevin particle located at the head and a sequential passive chain. Results show that the active force exerted by the active head pulls the active polymer away from the surface. Consequently, the adsorption of the active polymer is hindered, and the critical surface attraction strength, , increases proportionally to the square of the active force, Fa2. The increase in depends on the rotation behavior of the active head. Specifically, for the restricted rotating active polymer (RRAP) chain with a longer rotational persistence time as the rotation of the active head is restricted, increases significantly with Fa. On the other hand, for the freely rotating active polymer (FRAP) chain with a shorter rotational persistence time as the rotation of the active head is free, shows a weak dependence on Fa. The results show that the active force has a significantly stronger pulling effect on the RRAP chain than on the FRAP chain. Furthermore, knotted conformations are observed for the adsorbed RRAP chain at large Fa. These knots reduce the adsorption of monomers near the grafted end. In contrast, no knotted conformations are observed for the FRAP chains due to the comparatively weaker pulling effect of the active force.

2.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38716854

ABSTRACT

The translocation of polymers through nanopores is a complex process influenced by various factors. In this study, the translocation behavior of a two-dimensional active polymer chain, comprised of a head active Brownian particle (ABP) and a tail passive polymer chain, through a nanopore is studied using Langevin dynamics simulations. Results show that the effect of the self-propulsion force of the ABP on the translocation differs significantly from the driving force inside the pore for traditional polymer translocations. Specifically, the translocation time τ initially increases with increasing the magnitude fs of the self-propulsion force and then decreases with a further increase in fs. A small fs lowers the potential barrier for the translocation and thus promotes slow translocations, whereas a large fs directly pulls the polymer chain through the nanopore following the scaling relation τ ∝ fs-1. Moreover, two asymptotic scaling relations between τ and polymer length N, τ ∝ Nα, are found, with the exponent α of about 2.5 for small fs or long N and the exponent α of about 1.4 for short active polymers with large fs. We discover that the slow rotation of the ABP accelerates the translocation process.

3.
Prev Vet Med ; 226: 106186, 2024 May.
Article in English | MEDLINE | ID: mdl-38518657

ABSTRACT

Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine Reproductive and Respiratory Syndrome/epidemiology , Farms , Ohio/epidemiology , Retrospective Studies , Vaccines, Attenuated , Phylogeny
4.
Soft Matter ; 20(3): 621-628, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38131641

ABSTRACT

The adsorption of active polymers on an attractive nanoparticle (NP) is studied using Langevin dynamics simulations. The active polymers consist of an active Brownian particle (ABP) at the head and a subsequent passive polymer chain. The ABP experiences an active force of magnitude Fa. The interactions between the active polymer and NP are modeled as Lennard-Jones potential with a strength εpn. We find the critical adsorption point εpn* increases with increasing the active force Fa. The increment of εpn*, denoted as Δεpn*, due to Fa can be expressed approximately as Δεpn* ∝ Fa2.5 for the restricted rotating active polymer (RRAP) where the rotation of the head ABP is restricted and Δεpn* ∝ Fa1.7 for the freely rotating active polymer (FRAP) where the ABP rotates freely. Meanwhile, the conformation of the adsorbed polymer, such as adsorbed trains on NP and the tail near the ABP, are also dependent on Fa. When the tail near the ABP is short, the adsorption is significantly affected by the active force. However, when the tail is long, the whole polymer can be viewed as a long tail stretched by the active force and unperturbed adsorption monomers. Simulation results show that the active force has a direct and significant effect on εpn* and the structure of the adsorbed active polymers.

5.
BMC Pulm Med ; 23(1): 375, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803309

ABSTRACT

BACKGROUND: Lung salivary-type tumors originating from bronchial submucosal glands are rare, only four types of salivary gland-type tumors are listed in 2015 WHO classification of lung tumors. Here, we report a rare case of oncocytic carcinoma (OC) in the right main bronchus. CASE PRESENTATION: A 34-year-old man presented to our hospital with a two-month history of recurrent hemoptysis and with one month of inspiratory dyspnea. Pulmonary function tests showed mild restrictive ventilatory dysfunction and severe diffusion dysfunction. Furthermore, the flow volume loop showed a variable extra-thoracic obstruction. Computed tomography (CT) of the chest revealed that a polypiform nodule of 13 mm in diameter was at the proximal right main bronchus. Testing for purified protein derivative was positive (category 2). The nodule was resected under bronchoscopy. The bronchial aspirate was negative for mycobacterium tuberculosis and tumor cells. The biopsy sample showed a solid and acinar predominant pattern with abundant eosinophilic cytoplasm. The bronchial mucosa was destroyed and replaced by tumor cells. The loose edematous stromal reaction could be seen in a local area. Immunohistochemically, tumor cells were positive for CK, EMA, Vimentin, CD117, CK7, S100, Mammaglobin and SOX10. Only scattered tumor cells were stained by basal cell markers, including CK5/6, P40 and P63. Electron microscopy revealed numerous swelling mitochondria with lacking mitochondrial cristae in tumor cells. Fluorescence in situ hybridization (FISH) testing for MAML2 and ETV6 rearrangement were negative. Next-generation sequencing analysis of 520 genes in the tissue biopsy specimen showed no somatic mutation. The diagnosis of OC was made. Subsequently, the patient underwent a right upper lobectomy with sleeve resection of the main bronchus and lymph dissection. No recurrent evidence was seen during two years of chest CT follow-up. CONCLUSIONS: To our knowledge, this is the first case of primary OC in the bronchus. This patient has no recurrence during two years of follow-up, indicating that primary OC in the bronchus has the same favorable prognosis as in salivary glands. Moreover, complete excision and thorough sampling to know the invasive growth pattern is important to reach the correct diagnosis.


Subject(s)
Adenocarcinoma , Lung Neoplasms , Male , Humans , Adult , In Situ Hybridization, Fluorescence , Bronchi/surgery , Bronchoscopy
6.
Adv Mater ; 35(10): e2209030, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36504418

ABSTRACT

Slot-die coating is recognized as the most compatible method for the roll-to-roll (R2R) processing of large-area flexible organic solar cells (OSCs). However, the photovoltaic performance of large-area flexible OSC lags significantly behind that of traditional spin-coating devices. In this work, two acceptors, Qx-1 and Qx-2, show quite different film-formation kinetics in the slot-die coating process. In situ absorption spectroscopy indicates that the excessive crystallinity of Qx-2 provides early phase separation and early aggregation, resulting in oversized crystal domains. Consequently, the PM6:Qx-1-based 1 cm2 flexible device exhibits an excellent power conversion efficiency (PCE) of 13.70%, which is the best performance among the slot-die-coated flexible devices; in contrast, the PM6:Qx-2 blend shows a pretty poor efficiency, which is lower than 1%. Moreover, the 30 cm2 modules based on PM6:Qx-1, containing six 5 cm2 sub-cells, exhibit a PCE of 12.20%. After being stored in a glove box for over 6000 h, the PCE remains at 103% of its initial values, indicating excellent shelf stability. Therefore, these results show a promising future strategy for the upscaling fabrication of flexible large-area OSCs.

7.
Soft Matter ; 18(46): 8820-8829, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36367147

ABSTRACT

The dynamics of a two-dimensional active polymer composed of an active Brownian particle (ABP) at the head and a passive polymer chain is investigated using Langevin dynamics simulation. The ABP experiences a self-propulsion force fs and a resistance torque M as the passive polymer chain is bonded to the edge of the ABP. M restricts the rotation of the ABP, and thus the dynamics of the ABP and that of the whole active polymer are influenced significantly. Due to this restriction, the persistence time τr, which characterizes the random rotation of the ABP, is increased significantly and changes non-monotonically with the rotational friction coefficient ηr. Our simulation results show that the effect of M on the dynamics of the active polymer can be characterized mainly by the change of τr. Moreover, the propulsive diffusion coefficient DP of the whole polymer chain originated from the self-propulsion force can be described by a scaling relation DP ∝ fs2τr/N2ηt2 with ηt the translational friction coefficient and N the polymer length. Our results show that the diffusion is promoted by the resistance torque M and τr is a key factor for the diffusion of active polymers.

8.
Chem Biodivers ; 19(9): e202200618, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35972824

ABSTRACT

Three rare spirocyclohexadienone-type neolignans, magnoflorins A-C (1-3), and three known analogs (4-6), were isolated from the leaves of Magnolia liliiflora. Magnoflorin D (4) was obtained from natural resources for the first time. The chemical structures and absolute configurations of 1-4 were elucidated through detailed analysis of HR-ESI-MS, IR, 1 H, 13 C, and 2D NMR, and ECD experiments. The absolute configuration of 5 were characterized by X-ray crystallography in present study. Moreover, compounds 4 and 5 displayed moderate neuroprotective activity against corticosterone-induced PC12 cells injury at 20 µM with cell viability of 71.5±0.99 % and 73.0±1.42 %, respectively, compared to the model group with 60.83±0.93 %. Compound 6 could enhance neurite outgrowth of nerve growth factor (NGF)-induced PC12 cells at 10 µM with the differentiation rate of 11.98 %, compared with 20.49 % of 50 ng/ml NGF.


Subject(s)
Lignans , Magnolia , Animals , Corticosterone/metabolism , Lignans/metabolism , Lignans/pharmacology , Magnolia/chemistry , Nerve Growth Factor/metabolism , Neurites/metabolism , Neuronal Outgrowth , PC12 Cells , Rats
9.
Chem Commun (Camb) ; 56(65): 9380-9383, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32672776

ABSTRACT

An axially chiral TADF emitter, 4tBuCzPN, with a dual emitting core was easily synthesized. Compared with the TADF emitter 2tBuCzPN with the PLQY of 29% and EQE of 5.3%, 4tBuCzPN showed a significantly increased PLQY (74%) and EQE (20.8%) for its OLED. Moreover, the enantiomers of 4tBuCzPN also exhibited mirror-image CD and CPL properties, and the glum values of (+)-4tBuCzPN and (-)-4tBuCzPN were +5.4 × 10-3 and -5.0 × 10-3 in toluene, respectively.

10.
Cell Commun Signal ; 18(1): 75, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429933

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

11.
Mater Sci Eng C Mater Biol Appl ; 111: 110841, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279816

ABSTRACT

The control of massive bleeding and its related wound infection is the main challenge for both military and civilian trauma centres. In this study, a cationic superabsorbent hydrogel coordinated by mesoporous silica (CSH-MS) was synthesized by free-radical polymerization for both haemostasis and antibacterial use. The as-prepared CSH-MS has a rough surface, and its water absorption is approximately 5000%. The resultant CSH-MS1 could promote blood cell aggregation and facilitate plasma protein activation via haemadsorption, resulting in efficient blood clot formation. Furthermore, CSH-MS1 (with approximately 5.06% contents of MS) dramatically reduces bleeding time and reduces blood loss in a rat-tail amputation model. Moreover, the CSH-MSs exhibits good antibacterial activities, excellent cytocompatibility and negligible haemolysis. Therefore, CSH-MS can serve as a novel type of haemostatic material in clinical applications.


Subject(s)
Hemostatics/pharmacology , Hydrogels/pharmacology , Silicon Dioxide/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Blood Coagulation/drug effects , Cations , Erythrocytes/drug effects , Escherichia coli/drug effects , Hemostasis/drug effects , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Male , Microbial Sensitivity Tests , Porosity , Rabbits , Rats, Sprague-Dawley , Staphylococcus aureus/drug effects
12.
Cell Commun Signal ; 18(1): 40, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32151266

ABSTRACT

BACKGROUND: Diabetic wounds are a disturbing and rapidly growing clinical problem. A novel peptide, parathyroid hormone related peptide (PTHrP-2), is assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in wound healing. METHODS: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 were determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 were determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos were added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. RESULTS: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played a hub role in PTHrP-2 indirect effects in wound healing. CONCLUSION: These findings of this study indicated that PTHrP-2, a multifunctional factor, could promote wound healing via synergistic multicellular stimulating and exosomal activities.


Subject(s)
Diabetes Mellitus, Experimental , Parathyroid Hormone-Related Protein , Skin/drug effects , Wound Healing/drug effects , Animals , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Exosomes/metabolism , HaCaT Cells , Human Umbilical Vein Endothelial Cells , Humans , Male , Neovascularization, Physiologic/drug effects , Parathyroid Hormone-Related Protein/administration & dosage , Parathyroid Hormone-Related Protein/pharmacology , Rats , Rats, Sprague-Dawley , Skin/pathology
13.
Chem Commun (Camb) ; 55(81): 12172-12175, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31544179

ABSTRACT

Phthalimide-based "D-N-A" emitters o-AI-Cz, m-AI-Cz and p-AI-Cz showed TADF and RTP properties due to their small ΔEST in both film and crystalline states. In particular, o-AI-Cz exhibited an ultralong RTP with a lifetime of 602 ms in air and remarkable afterglow, which could allow it to be used as a security ink for application in anti-counterfeiting materials. Moreover, o-AI-Cz showed intense intramolecular interaction between the donor and the acceptor subunits, while p-AI-Cz could form regular hexagonal pores with a diameter of 13.171 Å in the solid state, which might result in their different RTP properties.

14.
ANZ J Surg ; 89(10): E422-E427, 2019 10.
Article in English | MEDLINE | ID: mdl-31478308

ABSTRACT

BACKGROUND: A novel measurement technique has been designed to assess femoral rotation deformation. The purpose of this study was to evaluate smartphone-aided measurement, including measurement software, intra-observer differences and the occurrence frequency of the unacceptable outliers. METHODS: Five positions (intact bone, external and internal rotations of 20° and 40° of the distal blocks after dividing the femoral shafts using a saw) were used in each of the five artificial femora. Guide wires were separately inserted into the proximal and distal ends of the model femora with a navigation system and the intersection angles between the guide wires were measured with a smartphone. The values obtained by two measurement software packages (Smart Tools and Super Swiss Army Knife) were compared with that measured on the overlapped computed tomography images. RESULTS: There were no significant differences between the intersection angles measured by smartphone and that measured on the overlapped images (P = 0.24). The mean absolute difference between pairs of measurements of the two software packages for all guide wire angles was 2.33 ± 2.34°, without statistically significant difference (P = 0.33). There was a significant correlation (r = 0.99) between the first and second (1 week apart) measurements with the same measurement tool. The values of offset capability index of the Smart Tools and the Super Swiss Army Knife measurement tools were 1.62 and 1.13, respectively. CONCLUSION: Smartphone-aided measurement technique could reliably assess femoral rotation deformation with more accurate angle measurement for software with zero calibration function.


Subject(s)
Femur/abnormalities , Mobile Applications , Smartphone , Humans , Models, Anatomic , Observer Variation , Reproducibility of Results
15.
Chem Commun (Camb) ; 55(64): 9559-9562, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31338497

ABSTRACT

New kinds of oxacalixarenes based on the triazine moiety have been synthesized, which showed highly twisted conformations and small ΔEST, as well as temperature-dependent transient PL decay curves, indicating the excellent thermally activated delayed fluorescence properties. Moreover, the oxacalixarenes also exhibited apparent aggregation-induced emission properties in THF/H2O mixtures.

16.
Am J Hypertens ; 32(4): 426-432, 2019 03 16.
Article in English | MEDLINE | ID: mdl-30561502

ABSTRACT

BACKGROUND: The shift of metabolism from mitochondrial oxidative phosphorylation to glycolysis and mitochondria binding partner of hexokinase are features common to cancer. These have been seen in pulmonary hypertension (PH) as well. An inhibitor of hexokinase 2 (HK 2), the small molecule 3-bromopyruvate (3-BrPA) is an incredibly powerful and swift-acting anticancer agent. However, whether it could be of potential benefit to PH has still been unknown. METHODS: Sprague-Dawley rats with monocrotaline (MCT)-induced PH were administered 2 oral doses of 3-BrPA (15 and 30 mg/kg/day, respectively) for 14 days. Hemodynamic parameters were obtained by right heart catheterization. Histopathology, immunohistochemistry, transmission electron microscopy, flow cytometry, and assessments of relative protein expressions were conducted. RESULTS: Compared with MCT treatment, 3-BrPA decreased mean pulmonary arterial pressure and pulmonary vascular resistance, and increased cardiac output. 3-BrPA significantly suppressed proliferation in addition to enhancing apoptosis of pulmonary artery smooth muscle cells, attenuating small pulmonary artery remodeling and right ventricular hypertrophy. Treatment with 3-BrPA markedly reduced the mitochondrial membrane potential and restored mitochondrial structure. Furthermore, 3-BrPA significantly inhibited HK 2 expression but not HK 1. The expression of both pyruvate dehydrogenase kinase and lactate dehydrogenase was decreased whereas that of pyruvate dehydrogenase and cytosolic cytochrome c was upregulated with 3-BrPA administration. CONCLUSION: This study demonstrates the reversal of PH by 3-BrPA is related to alteration in glycolysis and improved mitochondria function, indicating the "metabolic targeting" as a rational therapeutic strategy for PH.


Subject(s)
Glycolysis/physiology , Hypertension, Pulmonary/drug therapy , Pulmonary Wedge Pressure/physiology , Pyruvates/pharmacology , Animals , Apoptosis/drug effects , Cardiac Catheterization , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Immunohistochemistry , Male , Pulmonary Wedge Pressure/drug effects , Rats , Rats, Sprague-Dawley , Treatment Outcome , Vascular Resistance/drug effects
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(5): 1317-22, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-30000998

ABSTRACT

Degenerate stimulated hyper-Raman pumping is used to excite high vibrational states of NaH. The full state-resolved distribution of scattered CO2(0000, J) molecules from collisions with excited NaH(ν″=14, J=21) was reported. The nascent number densities of NaH were determined from absorption measurements at times t=1 µs as the laser to prepare NaH(ν″, J″). Absorption signals were converted to NaH(ν″, J″) population using absorption coefficients and the transient Doppler-broadened linewidths. The nascent CO2(0000, J) population were obtained from transient overtone laser induced fluorescence line intensity measured at short times relative to the time between collisions. The scattered CO2(0000, J=2~80) molecules had a biexponential rotational distribution. Fitting the data with a two-component exponential model yielded CO2 product distributions with Trot=(650±80) and (1 531±150) K. The cooler distribution accounted for 79% of the scattered population and resulted from elastic or weakly inelastic collisions that induced very little rotational excitation in CO2. The hotter distribution involved large changes in CO2 rotational energy and accounted for 21% of collision. Nascent translational energy profiles for scattered CO2 (0000, J=60~80) were measured using high resolution transient overtone fluorescence. The relative translational energy of the scattered molecules increased as a function of final CO2 rotational state with 〈ΔErel〉=582 cm-1 for J=60, and 2 973 cm-1 for J=80. Energy transfer rates were determined for the full J-state distribution by monitoring the change of the nascent population. The total rate constant for appearance of scattered CO2(0000) was kapp=(7.2±1.8)×10(-10) cm(3)·mol(-1)·s(-1). The depletion for the low-J CO2 states was involved in the collisional energy transfer of the initial distribution. For J=2~38, the average rate constant for depletion of scattered CO2(0000) is 〈kdep〉=(6.9±1.7)×10(-10) cm(3)· mol(-1)·s(-1).

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(6): 1492-6, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25358152

ABSTRACT

Energy transfer in H2 (1,1) +CO2 collisions was investigated using high resolution transient laser spectroscopy. Rotational state selective excitation of v = 1 for rotational level J = 1 was achieved by stimulated Raman pumping. Energy gain into CO2 resulting from collisions with H2 (1,1) was probed using transient absorption techniques, Distributions of nascent CO2 rotational populations in both the ground (00 degrees 0) state and the vibrationally excited (00 degrees 1) state were determined from overtone absorption measurements. Translational energy distributions of the recoiling CO2 in individual rovibrational states were determined through measurement of Doppler-broadened transient line shapes. A kinetic model was developed to describe rates for appearance of CO2 states resulting from collisions with H2(1,1). From scanned CARS (coherent anti-stokes Raman scattering) the spectral peaks population ratio n0/n1 was obtained, where n0 and n1 represent the number densities of H2 at the levels (0,1) and (1,1), respectively. Using rotational Boltzmann distribution of H2 (v = 0) at 300 K, n1 was yielded. Values for rate coefficients were obtained using data for CO2 (00 degrees 0) J = 48 to 76 and CO2 (00 degrees 1) J = 5 to 33. The rate coefficients derived from appearance of the (00 degrees 0) state have values of K(tr) = (3.9 ± 0.8) x 10(-11) cm3 x molecule(-1) x s(-1) for J = 48 and k(tr) = (1.4 ± 0.3) x 10(-10) cm3 x molecule(-1) x s(-1) for J = 76, with a monotonic increase for the higher J states. For the (00 degrees 1) state, values of k(tr) remain fairly constant at k(tr) = (4.3 ± 0.9) x 10(-12) cm3 x molecule(-1) x s(-1). Rotational populations for the nascent CO2 states were measured at 0. 5 µs following excitation of H2. The transient population for each state was fit using a Boltzmann rotational distribution. The CO2 (00 degrees 0) J = 48-76 rotational states were populated substantially relative to the initial 300 K CO2 distributions, and the distribution is described by Trot. The excited (00 degrees 1) state has T(rot), 310 K. The center-of-mass translational temperatures for the (00 degrees 0) state are all much greater than 300 K, with T(rel) = 1 532 K for J = 76. In contrast, transient line profiles for the J = 5 - 33 levels of excited (00 degrees 1) state do not show any broadening above the initial 300 K distributions, indicating that excitation to the (00 degrees 1) state is not accompanied by translational energy change.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(7): 1758-62, 2014 Jul.
Article in Chinese | MEDLINE | ID: mdl-25269275

ABSTRACT

The vibrational levels of KH(X1 sigma+ v" = 0-3) were generated in the reaction of K(5P) with H2. The vibrationally excited KH(v" = 17) was populated by an overtone pump-probe configuration Different characteristics of collisional energy transfer in highly and lowly excited vibrational levels of KH and CO2 were investigated through measuring the time-resolved distribution of vibrational energy in KH(v" = 17.3) + CO2 collisions. For KH(v" = 17), there existed three principal regions of vibration temperature (T(v)) in this equilibration process. The initial phase consists of very rapid fall in T(v) within - 5 micros, and the vibrational energy of KH(v" = 17) is mainly transferred to the vibrational levels of CO2 (00 degrees 1) or high rotational levels of CO2 (00 degrees 0). The second phase (5-20 micros) has a slight decline in T(v), and the process of energy transfer to vibrational levels or high rotational levels of CO2 has already finished. The vibration temperature of the third phase has a slightly more rapid decline compared with the last phase. This phase shows that the process of transfer to lowly rotational levels and translation energy of CO2 is accelerated. The equilibration of vibrationally excited KH (v" = 3) in CO2 was also investigated. There are similarities to the behavior of KH (v" = 17) in CO2 plot, but also are significant differences. Once the initial resonant V-R exchange has equalized vibrational temperatures, there is a very slow linear decline in T(v) with equilibrium attained within -80 micros. This same point is reached within 15 micros for KH (v" = 17). The data demonstrate that single rate coefficient measurements are unlikely to capture the complex nature of processes that generally are multistaged with different relaxation rates characterizing each different stage. Examination of the quantum state distributions reveals that these distinct stages reflect the dominance of specific energy transfer mechanisms, some of which are inherently fast and others are much slower. The energy gain into CO2 resulting from collisions with excited KH was probed using transient absorption techniques. Distributions of nascent CO2 rotational populations in both ground (00 degrees 0) state and the vibrationally excited (00 degrees 1) state were determined. A kinetic model was developed to describe rate coefficients for appearance of CO2 states resulting from collisions with excited KH. These experiments show that collisions resulting in CO2 (00 degrees 0) are accompanied by substantial excitation in rotation while the vibrationally excited CO2 (00 degrees 1) state has rotational energy distributions near the initial distributions.

20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 884-7, 2014 Apr.
Article in Chinese | MEDLINE | ID: mdl-25007592

ABSTRACT

The radiative lifetimes and rate coefficients for deactivation of high lying 6(1)sigma+ state of NaK by collisions with H2 were studied. An OPO laser was set to a particular 2(1)sigma+ <-- 1(1)sigma+ transition. Another single mode Ti sapphire laser was then used to excite molecule from 2(1)sigma+ level to the 6(1)sigma+ state. The predissociation was monitored by the atomic potassium emission at the 3D --> 4P (1.7 microm) or the S --> 4P (1.24 microm), while bound state radiative processes were monitored by total fluorescence from the upper state to the various levels, all studied as a function of H2 density. The values for predissociation, collisional dissociation and collisional depopulation rate coefficients were obtained. The decay signal of the time resolved fluorescence from the 6(1)sigma+ --> 2(1)sigma+, 6(1)sigma+ -->1(1)sigma+ or 2(1)sigma+ --> 1(1)sigma+ transition was monitored. Based on the Stern-Volmer equation, the radiative lifetimes were monitored for 6(1)sigma+ --> 2(1)sigma+ and 2(1)sigma+ --> 1(1)sigma+ transition. The rate coefficients for deactivation of collisions with H2 were monitored for 6(1)sigma+ --> 2(1)sigma+, 6(1)sigma+ --> 1(1)sigma+ and 2(1)sigma+ -->1(1)sigma+. When the density of H2 was 10(19) cm(-3), the total collisional transfer energy (15 426 cm(-1)) and radiative energy (10 215 cm(-1)) were obtained. The relative fraction ((f(v)), (f(R)), (f(T)) of average energy disposal was derived as (0.58, 0.03, 0.39); (f(v)), (f(R)), (f(T)) represent separately the relative fraction of average energy disposal among vibration, rotation and translation. The major vibrational and translational energy release supports the assumption that the 6(1)sigma(+) -H2 collision occurs primarily in a collisional energy transfer mechanism. In this experiment, alkali molecules relative energy population ratio was determined through using the time integrated intensity, so we can get the total transfer energy. That the NaK (6(1)sigma+) energy transfers to the H2 vibrational, rotational and translational energy was quantitatively given for the first time, which illustrates the collisional mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...