Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 616: 316-325, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35219197

ABSTRACT

The development of highly active and earth-rich electrocatalysts remains a formidable challenge for the commercialization of fuel cells. Herein, a composite carrier composed of cobaltous telluride (CoTe) and carbon (C) has been designed for the first time to enhance the electrocatalytic performance of palladium (Pd) nanoparticles (NPs) for the electro-oxidation of ethylene glycol (EG). Remarkably, the mass activity for the as-prepared Pd/CoTe-C catalyst during the ethylene glycol oxidation reaction (EGOR) is found to reach up to 3917.3 mA mg-1, which is 2.2 times higher than that of Pd/Co-C (1785.0 mA mg-1) and 4.1 times greater than that of commercial Pd/C catalyst (962.4 mA mg-1), exceeding that obtained for most Pd-based electrocatalysts reported thus far. In particular, the Pd/CoTe-C catalyst shows better electrochemical stability toward the EGOR than the Pd/Co-C and commercial Pd/C catalysts. Thus, the Pd/CoTe-C electrocatalyst is expected to exhibit broad application prospects in the field of fuel cells.

2.
Sci Total Environ ; 643: 1232-1238, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30189539

ABSTRACT

Many of the most invasive plants are clonal, and clonal integration has been proposed as an important mechanism promoting invasiveness. When the availabilities of two essential resources are negatively correlated in space, clonal integration may benefit clonal plants through division of labor. We hypothesized that environments with reciprocal patchiness of light and soil water may induce division of labor, and nutrient addition may increase both the division of labor and the benefits of clonal integration. To test this, we grew pairs of connected and disconnected ramets of the clonal invader Mikania micrantha under negative spatial covariance of light and soil water such that the proximal ramets were grown under high light and low soil water conditions and the distal ramets were grown under low light and high soil water conditions. In half of the ramet pairs, both ramets of a pair received a nutrient addition treatment. The results showed that connection decreased the root to shoot ratio in proximal ramets and increased it in distal ramets, indicating that division of labor was induced. In addition, connection increased the root to shoot ratio of distal ramets more under high soil nutrient conditions than under low soil nutrient conditions, indicating that nutrient addition increased the division of labor. Connection increased plant biomass at the whole clonal fragment level, and this increase was larger under high soil nutrient conditions than under low soil nutrient conditions. This study showed, for the first time, that in environments with reciprocal patchiness of two essential resources, the capacity for division of labor and its influence on plant performance may depend on the availability of a third essential resource. Because invasive plants often can acquire a larger amount of soil resources than native plants, our study may also contribute to the understanding why clonality is related to invasiveness.


Subject(s)
Ecosystem , Introduced Species , Nitrogen/analysis , Phosphorus/analysis , Biomass , Environmental Monitoring , Food , Soil/chemistry , Water
3.
PLoS One ; 8(12): e84657, 2013.
Article in English | MEDLINE | ID: mdl-24367686

ABSTRACT

The perennial stoloniferous herbaceous vine Mikania micrantha H.B.K. is among the most noxious exotic invaders in China and the world. Disturbance can fragment stolons of M. micrantha and disperse these fragments over long distances or bury them in soils at different depths. To test their regeneration capacity, single-node stolon fragments with stolon internode lengths of 0, 3, 6 and 12 cm were buried in soil at 0, 2, 5 and 8 cm depths, respectively. The fragments were growing for nine weeks, and their emergence status, growth and morphological traits were measured. The results indicated that increasing burial depth significantly decreased survival rate and increased the emergence time of the M. micrantha plants. At an 8-cm burial depth, very few fragments (2.19%) emerged and survived. Burial did not affect the total biomass and root to shoot ratio of the surviving M. micrantha plants that emerged from the 0- and 2-cm burial depths. Increasing internode length significantly increased survival rate and growth measures, but there was no interaction effect with burial depth for any traits measured. These results suggest that M. micrantha can regenerate from buried stolon fragments, and thus, disturbance may contribute to the spread of this exotic invader. Any human activities producing stolon fragments or facilitating dispersal should be avoided.


Subject(s)
Introduced Species , Mikania/growth & development , Plant Shoots/anatomy & histology , Plant Shoots/growth & development , Analysis of Variance , Biomass , China , Mikania/anatomy & histology , Plant Roots/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...