Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 21(1): 505, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37496011

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is highly prevalent and lethal globally, and its prognosis remains unsatisfactory. Drug resistance is regarded as the main cause of treatment failure leading to tumor recurrence and metastasis. The overexpression of fucosylated epitopes, which are usually modifications of glycoproteins, was reported to occur in various epithelial cancers. However, the effects of treatments that target these antigens in colorectal cancer remain unclear. METHODS: This study investigated the expression of heavily fucosylated glycans (HFGs) in 30 clinical samples from patients with CRC and other normal human tissues. The complement-dependent cytotoxicity was explored in vitro through treatment with anti-HFG monoclonal antibody (mAb) alone or in combination with chemotherapeutic agents. In vivo inhibitory effects were also examined using a xenograft mouse model. RESULTS: Immunohistochemistry staining and western blotting revealed that HFG expression was higher in human colorectal cancer tissues than in normal tissues. In DLD-1 and SW1116 cells, which overexpress fucosylated epitopes, anti-HFG mAb produced observable cytotoxic effects, especially when it was combined with chemotherapeutic agents. The xenograft model also demonstrated that anti-HFG mAb had potent and dose-dependent inhibitory effects on colorectal tumor growth. CONCLUSIONS: As a novel cancer antigen, HFGs are a promising treatment target, and the implementation of anti-HFG mAb treatment for CRC warrants further investigation.


Subject(s)
Colorectal Neoplasms , Neoplasm Recurrence, Local , Humans , Animals , Mice , Immunohistochemistry , Antigens , Disease Models, Animal , Epitopes , Polysaccharides/pharmacology , Colorectal Neoplasms/pathology , Cell Line, Tumor
2.
Pediatr Allergy Immunol ; 33(2): e13744, 2022 02.
Article in English | MEDLINE | ID: mdl-35212041

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) occurs in exclusively breastfed infants. As fatty acids have some immunomodulatory effect, we aimed to investigate the influence of fatty acid compositions in breast milk (BM) on the development of AD in exclusively breastfed infants. METHODS: We enrolled two- to four-month-old exclusively breastfed infants. The objective SCORing Atopic Dermatitis (objSCORAD) was evaluated. The lipid layer of BM was analyzed by gas chromatography for fatty acid levels. Medical charts were reviewed. RESULTS: Forty-seven AD infants and 47 healthy controls were enrolled. The objSCORAD was 20.5 ± 1.7 (shown as mean ± SEM) in the AD group. The age, sex, parental atopy history, and nutrient intake of mothers were not significantly different between two groups. The palmitate and monounsaturated fatty acid (MUFA) levels in BM positively correlated with objSCORAD, while caprylate, acetate, and short-chain fatty acid (SCFA) levels negatively correlated with objSCORAD (p = .031, .019, .039, .013, .022, respectively). However, the butyrate levels in BM were not significantly different. The caprylate and acetate levels in BM were significantly associated with the presence of infantile AD (p = .021 and .015, respectively) after adjusting for age, sex, parental allergy history, MUFA, palmitate, and SCFA levels in BM. ObjSCORAD in infancy was significantly associated with persistent AD (p = .026) after adjusting for age, sex, parental atopy history, caprylate, palmitate, MUFA, acetate, and SCFA levels in BM. CONCLUSION: Caprylate and acetate levels in BM for exclusively breastfed infants were negatively associated with objSCORAD. Lower caprylate and acetate in BM might be the risk factors for infantile AD, while butyrate in BM was not associated with infantile AD.


Subject(s)
Dermatitis, Atopic , Milk, Human , Acetates , Breast Feeding , Caprylates/analysis , Female , Humans , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...