Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Neurochem ; 166(4): 678-691, 2023 08.
Article in English | MEDLINE | ID: mdl-37439370

ABSTRACT

Peripheral nerves have limited regeneration ability following nerve injury. Applying growth factors with neurotrophic roles is beneficial for accelerating peripheral nerve regeneration. Here we show that after rat sciatic nerve injury, growth factor amphiregulin (AREG) is upregulated in Schwann cells of sciatic nerves. Elevated AREG stimulates the proliferation and migration of Schwann cells by activating ERK1/2 cascade. Schwann cell-secreted AREG further facilitates the outgrowth of neurites and the elongation of injured axons. Administration of AREG to injured sciatic nerves stimulates the proliferation of Schwann cells to replace lost cell population, encourages the migration of Schwann cells to form cell cords, and facilitates the regrowth of axons. Overall, our results identify AREG as an important neurotrophic factor and thus provide a promising therapeutic avenue towards peripheral nerve injury.


Subject(s)
Axons , Peripheral Nerve Injuries , Rats , Animals , Amphiregulin/pharmacology , Amphiregulin/metabolism , Axons/metabolism , Schwann Cells/metabolism , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Peripheral Nerve Injuries/metabolism , Cell Proliferation
2.
Mol Neurobiol ; 60(9): 5352-5365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37316757

ABSTRACT

Nerve injury-induced Schwann cell dedifferentiation helps to construct a favorable microenvironment for axon growth. Transcription factors regulate cell reprogramming and thus may be critical for Schwann cell phenotype switch during peripheral nerve regeneration. Here, we show that transcription factor B-cell lymphoma/leukemia 11A (BCL11A) is up-regulated in Schwann cells of injured peripheral nerves. Bcl11a silencing suppresses Schwann cell viability, decreases Schwann cell proliferation and migration rates, and impairs the debris clearance ability of Schwann cells. Reduced Bcl11a in injured peripheral nerves results in restricted axon elongation and myelin wrapping, leading to recovery failure. Mechanistically, we demonstrate that BCL11A may mediate Schwann cell activity through binding to the promoter of nuclear receptor subfamily 2 group F member 2 (Nr2f2) and regulating Nr2f2 expression. Collectively, we conclude that BCL11A is essential for Schwann cell activation and peripheral nerve regeneration, providing a potential therapeutic target for the treatment of peripheral nerve injury.


Subject(s)
Nerve Regeneration , Repressor Proteins , Schwann Cells , Transcription Factors , Animals , Humans , Rats , Peripheral Nerve Injuries/metabolism , Peripheral Nerves , Repressor Proteins/metabolism , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Transcription Factors/metabolism
3.
J Mol Neurosci ; 72(6): 1402-1412, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35575968

ABSTRACT

Cellular metabolism is essentially linked to tissue remodeling and organ regeneration. MOGS, a gene that encodes cellular metabolism-related protein mannosyl-oligosaccharide glucosidase, was found to be upregulated in nerve segments after peripheral nerve injury. Bioinformatic analyses identified upstream regulators of MOGS and MOGS-associated genes and indicated the significant involvement of cellular metabolism in peripheral nerve regeneration. Functional assessment showed that siRNA-mediated knockdown of MOGS led to elevated proliferation, migration, and differentiation of Schwann cells, indicating the negative regulation of MOGS on Schwann cell plasticity. Schwann cells transfected with MOGS siRNA also showed lower expression of fatty acid synthase (FASN), demonstrating that dysregulated MOGS in Schwann cells may affect neuronal behavior through the metabolic coupling between Schwann cells and axons. Taken together, this study demonstrated that MOGS may be a key regulating factor of Schwann cells and neuronal phenotype during peripheral nerve regeneration.


Subject(s)
Peripheral Nerve Injuries , Animals , Cell Movement , Cell Plasticity , Cell Proliferation , Nerve Regeneration/genetics , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , RNA, Small Interfering , Rats , Rats, Sprague-Dawley , Schwann Cells/metabolism , Sciatic Nerve/injuries
4.
Mol Neurobiol ; 59(2): 1058-1072, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34837628

ABSTRACT

Schwann cells switch to a repair phenotype following peripheral nerve injury and create a favorable microenvironment to drive nerve repair. Many microRNAs (miRNAs) are differentially expressed in the injured peripheral nerves and play essential roles in regulating Schwann cell behaviors. Here, we examine the temporal expression patterns of miR-29a-3p after peripheral nerve injury and demonstrate significant up-regulation of miR-29a-3p in injured sciatic nerves. Elevated miR-29a-3p inhibits Schwann cell proliferation and migration, while suppressed miR-29a-3p executes reverse effects. In vivo injection of miR-29a-3p agomir to rat sciatic nerves hinders the proliferation and migration of Schwann cells, delays the elongation and myelination of axons, and retards the functional recovery of injured nerves. Mechanistically, miR-29a-3p modulates Schwann cell activities via negatively regulating peripheral myelin protein 22 (PMP22), and PMP22 extensively affects Schwann cell metabolism. Our results disclose the vital role of miR-29a-3p/PMP22 in regulating Schwann cell phenotype following sciatic nerve injury and shed light on the mechanistic basis of peripheral nerve regeneration.


Subject(s)
MicroRNAs , Myelin Proteins , Nerve Regeneration , Schwann Cells , Animals , Cell Movement/genetics , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Myelin Proteins/genetics , Myelin Proteins/metabolism , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Schwann Cells/metabolism , Sciatic Nerve/injuries
5.
Neural Regen Res ; 17(7): 1588-1595, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34916445

ABSTRACT

Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic nerve stumps (SRP113121) and L4-5 dorsal root ganglia (SRP200823) obtained from the National Center for Biotechnology Information were analyzed to decipher cellular senescence and proliferation-associated genetic changes. We first constructed a rat sciatic nerve crush model. Then, ß-galactosidase activities were determined to indicate the existence of cellular senescence in the injured sciatic nerve. Ki67 and EdU immunostaining was performed to indicate cellular proliferation in the injured sciatic nerve. Both cellular senescence and proliferation were less vigorous in the dorsal root ganglia than in sciatic nerve stumps. These results reveal the dynamic changes of injury-induced cellular senescence and proliferation from both genetic and morphological aspects, and thus extend our understanding of the biological processes following peripheral nerve injury. The study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20190226-001) on February 26, 2019.

6.
Front Cell Neurosci ; 15: 743532, 2021.
Article in English | MEDLINE | ID: mdl-34720881

ABSTRACT

CD146 is cell adhesion molecule and is implicated in a variety of physiological and pathological processes. However, the involvement of CD146 in peripheral nerve regeneration has not been studied yet. Here, we examine the spatial and temporal expression pattern of CD146 in injured mouse sciatic nerve via high-throughput data analysis, RT-PCR and immunostaining. By microarray data analysis and RT-PCR validation, we show that CD146 mRNA is significantly up-regulated in the nerve bridge and in the distal nerve stump following mouse sciatic nerve transection injury. By single cell sequencing data analysis and immunostaining, we demonstrate that CD146 is up-regulated in Schwann cells and cells associated with blood vessels following mouse peripheral nerve injury. Bioinformatic analysis revealed that CD146 not only has a key role in promoting of blood vessel regeneration but also regulates cell migration. The biological function of CD146 in Schwann cells was further investigated by knockdown of CD146 in rat primary Schwann cells. Functional assessments showed that knockdown of CD146 decreases viability and proliferation of Schwann cells but increases Schwann cell migration. Collectively, our findings imply that CD146 could be a key cell adhesion molecule that is up-regulated in injured peripheral nerves to regulate peripheral nerve regeneration.

7.
Mater Today Bio ; 12: 100158, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34841240

ABSTRACT

Tissue-engineered nerve grafts (TENGs) are the most promising way for repairing long-distance peripheral nerve defects. Chitosan and poly (lactic-co-glycolic acid) (PLGA) scaffolds are considered as the promising materials in the pharmaceutical and biomedical fields especially in the field of tissue engineering. To further clarify the effects of a chitosan conduit inserted with various quantity of poly (lactic-co-glycolic acid) (PLGA) scaffolds, and their degrades on the peripheral nerve regeneration, the chitosan nerve conduit inserted with different amounts of PLGA scaffolds were used to repair rat sciatic nerve defects. The peripheral nerve regeneration at the different time points was dynamically and comprehensively evaluated. Moreover, the influence of different amounts of PLGA scaffolds on the regeneration microenvironment including inflammatory response and cell state were also revealed. The modest abundance of PLGA is more instrumental to the success of nerve regeneration, which is demonstrated in terms of the structure of the regenerated nerve, reinnervation of the target muscle, nerve impulse conduction, and overall function. The PLGA scaffolds aid the migration and maturation of Schwann cells. Furthermore, the PLGA and chitosan degradation products in a correct ratio neutralize, reducing the inflammatory response and enhancing the regeneration microenvironment. The balanced microenvironment regulated by the degradants of appropriate PLGA scaffolds and chitosan conduit promotes peripheral nerve regeneration. The findings represent a further step towards programming TENGs construction, applying polyester materials in regenerative medicine, and understanding the neural regeneration microenvironment.

8.
Mil Med Res ; 7(1): 57, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225981

ABSTRACT

BACKGROUND: Cytokines are essential cellular modulators of various physiological and pathological activities, including peripheral nerve repair and regeneration. However, the molecular changes of these cellular mediators after peripheral nerve injury are still unclear. This study aimed to identify cytokines critical for the regenerative process of injured peripheral nerves. METHODS: The sequencing data of the injured nerve stumps and the dorsal root ganglia (DRGs) of Sprague-Dawley (SD) rats subjected to sciatic nerve (SN) crush injury were analyzed to determine the expression patterns of genes coding for cytokines. PCR was used to validate the accuracy of the sequencing data. RESULTS: A total of 46, 52, and 54 upstream cytokines were differentially expressed in the SNs at 1 day, 4 days, and 7 days after nerve injury. A total of 25, 28, and 34 upstream cytokines were differentially expressed in the DRGs at these time points. The expression patterns of some essential upstream cytokines are displayed in a heatmap and were validated by PCR. Bioinformatic analysis of these differentially expressed upstream cytokines after nerve injury demonstrated that inflammatory and immune responses were significantly involved. CONCLUSIONS: In summary, these findings provide an overview of the dynamic changes in cytokines in the SNs and DRGs at different time points after nerve crush injury in rats, elucidate the biological processes of differentially expressed cytokines, especially the important roles in inflammatory and immune responses after peripheral nerve injury, and thus might contribute to the identification of potential treatments for peripheral nerve repair and regeneration.


Subject(s)
Cytokines/pharmacology , Neuralgia/drug therapy , Sciatic Nerve/drug effects , Animals , Cytokines/therapeutic use , Disease Models, Animal , Nerve Crush/methods , Rats , Rats, Sprague-Dawley
9.
Mol Cell Biochem ; 472(1-2): 35-44, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32529497

ABSTRACT

Autologous nerve grafting is the golden standard therapeutic approach of peripheral nerve injury. However, the clinical effect of autologous nerve grafting is still unsatisfying. To achieve better clinical functional recovery, it is of an impending need to expand our understanding of the dynamic cellular and molecular changes after nerve transection and autologous nerve transplantation. To address this aim, in the current study, rats were subjected to sciatic nerve transection and autologous nerve grafting. Rat sciatic nerve segments were collected at 4, 7, and 14 days after surgery and subjected to antibody array analysis to determine phosphoprotein profiling patterns. Compared with rats that underwent sham surgery, a total of 48, 19, and 75 differentially expressed phosphoproteins with fold changes > 2 or < -2 were identified at 4, 7, and 14 days after autologous nerve grafting, respectively. Several phosphoproteins, including STAM2 (Phospho-Tyr192) and Tau (Phospho-Ser422), were found to be differentially expressed at multiple time points, suggesting the importance of the phosphorylation of these proteins. Western blot validation of the expression patterns of STAM2 (Phospho-Tyr192) indicated the accuracy of antibody array assay. Bioinformatic analysis of these differentially expressed proteins suggested that cellular behavior and organ morphology were significantly involved biological functions while cell behavior and immune response-related signaling pathways were significantly involved canonical signaling pathways. These outcomes contributed to the illumination of the molecular mechanisms underlying autologous nerve grafting from the phosphoprotein profiling perspective.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Recovery of Function , Sciatic Nerve/metabolism , Animals , Male , Peripheral Nerve Injuries/etiology , Peripheral Nerve Injuries/pathology , Phosphorylation , Protein Array Analysis , Rats , Rats, Sprague-Dawley , Sciatic Nerve/injuries , Sciatic Nerve/surgery
10.
Neural Regen Res ; 15(8): 1502-1509, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31997815

ABSTRACT

The regenerative capacity of peripheral nerves is limited after nerve injury. A number of growth factors modulate many cellular behaviors, such as proliferation and migration, and may contribute to nerve repair and regeneration. Our previous study observed the dynamic changes of genes in L4-6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing. Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3, 9 hours, 1, 4, or 7 days after nerve crush, compared with the 0 hour control. Thirty-six rat models of sciatic nerve crush injury were prepared as described previously. Then, they were divided into six groups to measure the expression changes of representative genes at 0, 3, 9 hours, 1, 4 or 7 days post crush. Our current study measured the expression levels of representative upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin genes, and explored critical signaling pathways and biological process through bioinformatic analysis. Our data revealed that many of these dysregulated upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin, participated in tissue remodeling and axon growth-related biological processes Therefore, the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury. Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves. All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals, China (approval No. 20170302-017) on March 2, 2017.

11.
Mol Cell Biochem ; 462(1-2): 75-83, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31435814

ABSTRACT

Endothelial cells are important components of peripheral nerve stumps that contribute to Schwann cell migration and peripheral nerve regeneration. Let-7d modulates the phenotype of Schwann cells and affected peripheral nerve regeneration. However, the regulatory roles of let-7d on endothelial cells remain undetermined. In this study, by transfecting cultured human umbilical vein endothelial cells (HUVECs) with let-7d mimic or let-7d inhibitor, we investigated the biological effects of let-7d on endothelial cells. EdU proliferation assay showed that upregulated let-7d decreased the proliferation rates of HUVECs while downregulated let-7d increased the proliferation rates of HUVECs. Transwell-based migration assay and wound-healing assay demonstrated that let-7d inhibited the migration ability of HUVECs. Matrigel assay suggested that let-7d decreased the numbers of formed meshes and suppressed the tubulogenesis of HUVECs. RNA sequencing, bioinformatic analysis, gene expression validation, and luciferase assay suggested that let-7d directly targeted interferon-induced protein 44 like (IFI44L) gene and negatively regulated the expression of IFI44L. Taken together, our study illuminated the inhibitory roles of let-7d on the proliferation, migration, and tubulogenesis of endothelial cells, identified the target gene of let-7d, and deepened the understanding of the biological effects of let-7d on key elements of peripheral nerve regeneration.


Subject(s)
Cell Movement/genetics , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/metabolism , Neovascularization, Physiologic/genetics , Cell Proliferation/genetics , Humans , MicroRNAs/genetics , Tumor Suppressor Proteins/metabolism , Wound Healing
12.
Gastroenterology ; 145(5): 1110-20, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23896173

ABSTRACT

BACKGROUND & AIMS: Many patients with pancreatic ductal adenocarcinoma (PDAC) develop recurrent or metastatic diseases after surgery, so it is important to identify those most likely to benefit from aggressive therapy. Disruption of tissue microarchitecture is an early step in pancreatic tumorigenesis and a parameter used in pathology grading of glandular tumors. We investigated whether changes in gene expression during pancreatic epithelial morphogenesis were associated with outcomes of patients with PDAC after surgery. METHODS: We generated architectures of human pancreatic duct epithelial cells in a 3-dimensional basement membrane matrix. We identified gene expression profiles of the cells during different stages of tubular morphogenesis (tubulogenesis) and of PANC-1 cells during spheroid formation. Differential expression of genes was confirmed by immunoblot analysis. We compared the gene expression profile associated with pancreatic epithelial tubulogenesis with that of PDAC samples from 27 patients, as well as with their outcomes after surgery. RESULTS: We identified a gene expression profile associated with tubulogenesis that resembled the profile of human pancreatic tissue with differentiated morphology and exocrine function. Patients with PDACs with this profile fared well after surgery. Based on this profile, we established a 6-28 gene tubulogenesis-specific signature that accurately determined the prognosis of independent cohorts of patients with PDAC (total n = 128; accuracy = 81.2%-95.0%). One gene, ASPM, was down-regulated during tubulogenesis but up-regulated in human PDAC cell lines and tumor samples; up-regulation correlated with patient outcomes (Cox regression P = .0028). Bioinformatic, genetic, biochemical, functional, and clinical correlative studies showed that ASPM promotes aggressiveness of PDAC by maintaining Wnt-ß-catenin signaling and stem cell features of PDAC cells. CONCLUSIONS: We identified a gene expression profile associated with pancreatic epithelial tubulogenesis and a tissue architecture-specific signature of PDAC cells that is associated with patient outcomes after surgery.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Nerve Tissue Proteins/physiology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Transcriptome/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/physiology , Carcinoma, Pancreatic Ductal/genetics , Cell Differentiation/physiology , Cell Movement/genetics , Cell Movement/physiology , Disease Models, Animal , Epithelium/pathology , Follow-Up Studies , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Nerve Tissue Proteins/genetics , Pancreatic Neoplasms/genetics , Prognosis , Retrospective Studies , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome/physiology , Wnt Proteins/physiology , beta Catenin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...