Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Reprod Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867036

ABSTRACT

In the world, about 15% of couples are infertile, and nearly half of all infertility was caused by men. A large number of genetic mutations are thought to affect spermatogenesis by regulating acrosome formation. Here, we identified three patients harbouring the protein interacting with cyclin A1 (PROCA1) mutation by whole exome sequencing (WES) and Sanger sequencing among patients with predominantly acrosome-deficient teratozoospermia. However, the expression and roles of PROCA1 in infertile men remain unclear. We found that PROCA1 is predominantly expressed in the testis, where it is specifically localized to the acrosome of normal human sperm. Proca1 knockout (KO) mice were subsequently generated using CRISPR-Cas9 technology. However, Proca1 KO adult male mice were fertile, with testis-to-body weight ratios comparable to those of wild-type (WT) mice. Testicular tissue or sperm morphology were not significantly different in Proca1 KO mice compared to WT mice. Expression of the acrosome markers PNA and SP56 in the acrosome was comparable between Proca1 KO and WT mice. In summary, these findings suggested that the PROCA1 mutation identified in humans does not affect acrosome biogenesis in mice.

2.
Fish Shellfish Immunol ; 144: 109320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38122950

ABSTRACT

Blood clam Tegillarca granosa is a type of economically cultivated bivalve mollusk with red blood, and it primarily relies on hemocytes in its hemolymph for immune defense. However, there are currently no reports on the isolation and identification of immune cells in T. granosa, which hinders our understanding of their immune defense. In this study, we employed single-cell transcriptome sequencing (scRNA-seq) to visualize the molecular profile of hemocytes in T. granosa. Based on differential expression of immune genes and hemoglobin genes, hemocytes can be molecularly classified into immune cells and erythrocytes. In addition, we separated immune cells using density gradient centrifugation and demonstrated their stronger phagocytic capacity compared to erythrocytes, as well as higher levels of ROS and NO. In summary, our experiments involved the isolation and functional identification of immune cells in hemolymph of T. granosa. This study will provide valuable insights into the innate immune system of red-blood mollusks and further deepen the immunological research of mollusks.


Subject(s)
Arcidae , Bivalvia , Animals , Hemolymph , Arcidae/genetics , Bivalvia/genetics
3.
Anim Nutr ; 14: 450-460, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37649679

ABSTRACT

As a foodborne pathogen of global importance, Salmonella enterica serovar Enteritidis (S. Enteritidis) is a threat to public health that is mainly spread by poultry products. Intestinal Enterobacteriaceae can inhibit the colonization of S. Enteritidis and are regarded as a potential antibiotic substitute. We investigated, in chicks, the anti-S. Enteritidis effects of Escherichia coli (E. coli) Nissle 1917, the most well-known probiotic member of Enterobacteriaceae. Eighty 1-d-old healthy female AA broilers were randomly divided into 4 groups, with 20 in each group, namely the negative control (group P), the E. coli Nissle 1917-treated group (group N), the S. Enteritidis-infected group (group S) and the E. coli Nissle 1917-treated and S. Enteritidis-infected group (group NS). From d 5 to 7, chicks in groups N and NS were orally gavaged once a day with E. coli Nissle 1917 and in groups P and S were administered the same volume of sterile PBS. At d 8, the chicks in groups S and NS were orally gavaged with S. Enteritidis and in groups P and N were administered the same volume of sterile PBS. Sampling was conducted 24 h after challenge. Results showed that gavage of E. coli Nissle 1917 reduced the spleen index, Salmonella loads, and inflammation (P < 0.05). It improved intestinal morphology and intestinal barrier function (P < 0.05). S. Enteritidis infection significantly reduced mRNA expression of angiotensin-converting enzyme 2 (ACE2) and solute carrier family 6-member 19 (SLC6A19) in the cecum and the content of Gly, Ser, Gln, and Trp in the serum (P < 0.05). Pretreatment with E. coli Nissle 1917 yielded mRNA expression of ACE2 and SLC6A19 in the cecum and levels of Gly, Ser, Gln, and Trp in the serum similar to that of uninfected chicks (P < 0.05). Additionally, E. coli Nissle 1917 altered cecum microbiota composition and enriched the abundance of E. coli, Lactobacillales, and Lachnospiraceae. These findings reveal that the probiotic E. coli Nissle 1917 reduced S. Enteritidis infection and shows enormous potential as an alternative to antibiotics.

4.
J Cell Physiol ; 238(3): 597-609, 2023 03.
Article in English | MEDLINE | ID: mdl-36715674

ABSTRACT

Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.


Subject(s)
Adenylyl Cyclases , Septins , Animals , Male , Mice , Adenylyl Cyclases/metabolism , Mice, Knockout , Phosphorylation , Septins/chemistry , Septins/deficiency , Septins/genetics , Septins/metabolism , Sperm Capacitation , Spermatozoa/metabolism , Gene Knock-In Techniques
5.
Nurs Open ; 10(3): 1574-1581, 2023 03.
Article in English | MEDLINE | ID: mdl-36325731

ABSTRACT

AIM: This study aimed to examine the relationship between social support and quality of life in urostomy patients and identify the mediating role of resilience in that relationship. DESIGN: A cross-sectional design. METHODS: Participants included 232 patients who were recruited from a tertiary hospital in Beijing during March 2020 and August 2020. They completed questionnaires about perceived social support, resilience and ostomy-related quality of life. Structural equation modelling was performed to analyse the data. RESULTS: The mean age of patients was 65.79 (SD = 8.67) years, and the mean length of time after surgery was 42.14 (SD = 15.76) months. Urostomy patients' quality of life, social support and resilience were all above moderate. Social support had a positive direct effect on the quality of life and a positive indirect effect on the quality of life through the mediating role of resilience.


Subject(s)
Quality of Life , Resilience, Psychological , Humans , Aged , Cystectomy , Cross-Sectional Studies , Social Support
6.
Theranostics ; 12(4): 1537-1556, 2022.
Article in English | MEDLINE | ID: mdl-35198056

ABSTRACT

Diabetes is one of the most socially challenging health concerns. Even though islet transplantation has shown promise for insulin-dependent diabetes, there is still no effective method for curing diabetes due to the severe shortage of transplantable donors. In recent years, organoid technology has attracted lots of attention as organoid can mirror the human organ in vivo to the maximum extent in vitro, thus bridging the gap between cellular- and tissue/organ-level biological models. Concurrently, human pancreatic islet organoids are expected to be a considerable source of islet transplantation. To construct human islet-like organoids, the seeding cells, biomaterials and three-dimensional structure are three key elements. Herein, this review summarizes current progresses about the cell origins, biomaterials and advanced technology being applied to make human islet organoids, and discusses the advantages, shortcomings, and future challenges of them as well. We hope this review can offer a cross-disciplinary perspective to build human islet organoids and provide insights for tissue engineering and regenerative medicine.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Biocompatible Materials , Humans , Organoids , Technology
7.
Nurse Educ Pract ; 57: 103252, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34781196

ABSTRACT

AIM: This study explored the relationship between self-efficacy, professional identity and competence among nursing students and analyzed the mediating role of self-efficacy in the relationship between professional identity and competence. BACKGROUND: Increasing attention has been paid to the cultivation of competence among nursing students; however, few studies to date have analyzed its related factors and examined their relationship. DESIGN: A quantitative study with a descriptive design was performed in this study, adopting an online survey with convenience and snowball sampling. A cross-sectional sample of 887 nursing students in the internship period of their education program in mainland China was recruited from November to December 2020. METHODS: The Nursing Students Competence Instrument, Professional Identity Questionnaire for Nurse Students and General Self-efficacy Scale were distributed online. Descriptive statistics, Pearson's correlation, structural equation modeling (SEM) and the bootstrap method were employed in data analysis. RESULTS: Competence was significantly and positively correlated with professional identity (r = 0.598; P < 0.01) and self-efficacy (r = 0.692; P < 0.01). SEM analysis revealed that professional identity (ß = 0.31; P < 0.01) or self-efficacy (ß = 0.31; P < 0.01) could have a positive impact on competence. Meanwhile, self-efficacy played a mediating role in the relationship between professional identity and competence, with an indirect effect of professional identity creation through self-efficacy accounting for 52% of the total effect. CONCLUSIONS: Self-efficacy mediates the relationship between professional identity and competence to some extent. School educators and clinical tutors should pay greater attention to students' professional identity and self-efficacy to improve students' competence.


Subject(s)
Education, Nursing, Baccalaureate , Internship and Residency , Students, Nursing , Cross-Sectional Studies , Humans , Professional Competence , Self Efficacy , Self Report , Surveys and Questionnaires
8.
Animals (Basel) ; 11(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34573503

ABSTRACT

The present study was conducted to evaluate the effects of lecithin on the performance, meat quality, lipid metabolism, and cecum microbiota of broilers. One hundred and ninety-two one-day-old AA broilers with similar body weights (38 ± 1.0 g) were randomly assigned to two groups with six replicates of sixteen birds each and were supplemented with 0 and 1 g/kg of lecithin for forty-two days. Performance and clinical observations were measured and recorded throughout the study. Relative organ weight, meat quality, lipid-related biochemical parameters and enzyme activities were also measured. Compared with broilers in the control group, broilers in the lecithin treatment group showed a significant increase in L* value and tenderness (p < 0.05). Meanwhile, the abdominal adipose index of broilers was markedly decreased in lecithin treatment after 42 days (p < 0.05). In the lipid metabolism, broilers in the lecithin treatment group showed a significant increase in hepatic lipase and general esterase values at 21 days compared with the control group (p < 0.05). Lower Firmicutes and higher Bacteroidetes levels in phylum levels were observed in the lecithin treatment group after 21 and 42 days. The distribution of lactobacillus, clostridia, and rikenella in genus levels were higher in the lecithin treatment group after 21 and 42 days. No statistically significant changes were observed in performance, relative organ weight, or other serum parameters (p > 0.05). These results indicate that supplementation with lecithin significantly influence the lipid metabolism in broilers at 21 and 42 days, which resulted in the positive effect on the meat color, tenderness, and abdominal adipose in broilers.

9.
Nat Commun ; 12(1): 3878, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188032

ABSTRACT

Different levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3' ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3'-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


Subject(s)
DNA-Binding Proteins/metabolism , Nucleotidyltransferases/metabolism , RNA, Messenger/metabolism , Ribonucleases/genetics , Toll-Like Receptor 4/metabolism , 3' Untranslated Regions , Animals , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , RNA Stability , RNA, Messenger/genetics , Ribonucleases/metabolism , Uridine Monophosphate/metabolism
10.
Cells ; 10(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33572403

ABSTRACT

Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7‒SEPT7 interaction, but did not affect SEPT7‒SEPT6‒SEPT2 or SEPT4 interaction. Moreover, we noted that SEPT7 interacted with PKACA2 via its GTP-binding domain. Furthermore, PKA-mediated SEPT7 phosphorylation disrupted primary cilia formation. Thus, our data uncover the novel biological function of SEPT7 phosphorylation in septin filament polymerization and primary cilia formation.


Subject(s)
Cell Cycle Proteins/metabolism , Cilia/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Organogenesis , Septins/metabolism , Amino Acid Sequence , Cell Cycle Proteins/chemistry , Conserved Sequence , Humans , Phosphorylation , Phosphothreonine/metabolism , Protein Binding , Protein Domains , Septins/chemistry , Species Specificity
11.
R Soc Open Sci ; 7(5): 200641, 2020 May.
Article in English | MEDLINE | ID: mdl-32537233

ABSTRACT

[This corrects the article DOI: 10.1098/rsos.191561.].

12.
R Soc Open Sci ; 7(4): 191561, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32431865

ABSTRACT

Magnetic Fe3O4 nanoparticles (Fe3O4-NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe3O4-NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe3O4-NPs (60, 120 and 250 nm) were created, and the Fe3O4-NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe3O4-NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe3O4-NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe3O4-NPs was added. No significant difference in MDA was observed among the three Fe3O4-NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe3O4-NPs. In conclusion, the smaller Fe3O4-NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.

13.
Front Microbiol ; 11: 721, 2020.
Article in English | MEDLINE | ID: mdl-32390979

ABSTRACT

Autophagy is an important component of the innate immune system in mammals. Low levels of basic autophagy are sustained in normal cells, to help with the clearance of aging organelles and misfolded proteins, thus maintaining their structural and functional stability. However, when cells are faced with challenges, such as starvation or pathogenic infection, their level of autophagy increases significantly. Salmonella is a facultative intracellular pathogen, which imposes an economic burden on the poultry farming industry and human public health. Previous studies have shown that Salmonella can induce the autophagy of cells following invasion, which to a certain extent helps to protect the cells from bacterial colonization. This review summarizes the latest research in the field of Salmonella-induced autophagy, including: (i) the autophagy induction and escape mechanisms employed by Salmonella during the infection of host cells; (ii) the effect of autophagy on intracellular Salmonella; (iii) the important autophagy adaptors that recognize intracellular Salmonella in host cells; and (iv) the effect of autophagy-modulating drugs on Salmonella infection.

14.
Mol Hum Reprod ; 26(6): 402-412, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32392324

ABSTRACT

The connecting pieces of the sperm neck link the flagellum and the sperm head, and they are important for initiating flagellar beating. The connecting pieces are important building blocks for the sperm neck; however, the mechanism of connecting piece assembly is poorly understood. In the present study, we explored the role of septins in sperm motility and found that Sept12D197N knock-in (KI) mice produce acephalic and immotile spermatozoa. Electron microscopy analysis showed defective connecting pieces in sperm from KI mice, indicating that SEPT12 is required for the establishment of connecting pieces. We also found that SEPT12 formed a complex with SEPT1, SEPT2, SEPT10 and SEPT11 at the sperm neck and that the D197N mutation disrupted the complex, suggesting that the SEPT12 complex is involved in the assembly of connecting pieces. Additionally, we found that SEPT12 interacted and colocalized with γ-tubulin in elongating spermatids, implying that SEPT12 and pericentriolar materials jointly contribute to the formation of connecting pieces. Collectively, our findings suggest that SEPT12 is required for the formation of striated columns, and the capitulum and for maintaining the stability of the sperm head-tail junction.


Subject(s)
Septins/metabolism , Spermatogenesis/physiology , Spermatozoa/metabolism , Animals , Blotting, Western , Fluorescent Antibody Technique , Immunoprecipitation , Male , Mice , Microscopy, Electron, Transmission , Mutation/genetics , Septins/genetics , Sperm Motility/genetics , Sperm Motility/physiology , Spermatogenesis/genetics , Testis/metabolism
15.
Poult Sci ; 98(5): 2241-2249, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30668818

ABSTRACT

The effects of N-carbamylglutamate (NCG) on the growth performance, tissue development, and blood parameters of broilers are unknown. In this study, 2 linked experiments were conducted to investigate the effects of 4 graded dietary levels and 3 dietary stages of NCG in a Chinese indigenous yellow-feather broiler breed during 2 growth phases: 1 to 18 d and 19 to 36 d. The dietary levels of NCG were 0.05%, 0.10%, 0.15%, and 0.20%, and dietary stages were designed to add NCG during the starter stage or grower stage or throughout the experimental period. At the age of 18 d, graded doses of NCG from 0.05 to 0.20% in the diet produced quadratic (P < 0.05) positive responses in body weight, width of intermuscular fat cingulum, liver weight, serum blood urea nitrogen, and serum low-density lipoprotein as well as linear (P < 0.05) positive responses in albumin serum concentration. The average feed per gain and mortality were unaffected by dietary NCG levels. Among 3 dietary treatments, only NCG dietary treatments throughout the experimental period improved the body weight and daily weight gain linearly (P < 0.05). The daily weight gain under the 3 dietary treatments used indicated that the most fitting dose is 0.1% NCG among the 4 dietary levels of NCG (P < 0.05). At this dose, muscle weight increased, whereas subcutaneous adipose as well as the serum contents of uric acid, triglyceride, and albumin decreased. Considering the growth performance and tissue development under the conditions used in this study, the best-fit model for NCG requirements of Chinese yellow-feather broilers was estimated from regression analysis to be 0.09 to 0.12% dietary NCG treatments during the grower stage. The modified blood parameters indicated that NCG dietary effects on broiler growth may be accompanied by modified homeostasis of arginine metabolism, lipid deposition, protein synthesis, and immune response.


Subject(s)
Chickens/growth & development , Chickens/metabolism , Glutamates/metabolism , Animal Feed/analysis , Animals , Chickens/blood , Diet/veterinary , Dietary Supplements/analysis , Glutamates/administration & dosage
16.
Front Physiol ; 10: 1580, 2019.
Article in English | MEDLINE | ID: mdl-32009981

ABSTRACT

Recently nanomaterials have received substantial attention in biotechnology areas for their innovative properties in physical and chemical function. One of the most arrestive properties of nanomaterials that has been reported is their bacteriostatic activity. Our previous research found that Fe3O4 magnetic nanoparticles (Fe3O4-NPs) could effectively reduce the viability of intracellular Salmonella Enteritidis in chicken cells. There is an essential need to explore whether the bacteriostatic activity of Fe3O4-NPs is available in vivo. As an extension of this research, we conducted the present study to investigate the potential effect of Fe3O4-NPs used for S. Enteritidis control in chickens and to extensively investigate the underlying mechanisms in the process. The overall study included the evaluation of pathological sections, antioxidant status, inflammation, and the autophagy status of chicken liver, including the signaling pathway involved in the process. Results indicated that Fe3O4-NPs pretreatment can effectively inhibit the invasion of S. Enteritidis in chicken liver. Fe3O4-NPs pretreatment significantly increased reactive oxygen species (ROS) generation in chickens, including antioxidant enzyme activities. S. Enteritidis infection significantly increased the protein expression of the autophagy marker LC3. Additionally, the inflammation response and pathological changes caused by S. Enteritidis infection were alleviated by Fe3O4-NPs pretreatment. Phosphorylated mTOR was significantly increased in S. Enteritidis infected chickens, but showed no difference in chickens pretreated with Fe3O4-NPs. In summary, the results demonstrated that ROS and autophagy were involved in the inhibition of S. Enteritidis in chickens by Fe3O4-NPs pretreatment. The redox balance and inflammation response appeared normal in the process, as did the expression of the PI3K/Akt/mTOR signaling pathways. Taken together, our research demonstrate that the bacteriostatic activity of Fe3O4-NPs in chickens is avaliable and safe, which can be an alternative to antibiotics for bacterial inhibition in poultry industry.

17.
Cytoskeleton (Hoboken) ; 76(1): 137-142, 2019 01.
Article in English | MEDLINE | ID: mdl-30160375

ABSTRACT

The sperm annulus, a septin-based ring structure, is important for reproductive physiology. It is composed of SEPT12-based septin core complex followed by assembling as octameric filament. In clinical examinations, mutations of Septin12 result in male infertility, immotile sperm, as well as sperm with defective annuli. The dynamic assembly of septin filaments is regulated by several post-translational modifications, including sumoylation, acetylation, and phosphorylation. Here, we briefly review the biological significance and the regulation of SEPT12 phosphorylation in the mammalian sperm physiology. During mammalian spermiogenesis, the phosphorylation of SEPT12 on Ser198 residue is important in regulating mammalian annulus architectures. SEPT12 phosphomimetic knock-in mice displayed poor male fertility due to weak sperm motility and loss of the sperm annulus. SEPT12 is phosphorylated via Protein kinase A (PKA), and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Taken together, the phosphorylation status of SEPT12 is crucial for its function in regulating the mammalian sperm physiology.


Subject(s)
Septins/metabolism , Animals , Humans , Infertility, Male , Male , Mice , Phosphorylation , Septins/genetics , Sperm Motility/genetics , Sperm Motility/physiology , Spermatogenesis/genetics , Spermatogenesis/physiology , Spermatozoa/metabolism , Spermatozoa/physiology
18.
Theranostics ; 8(22): 6149-6162, 2018.
Article in English | MEDLINE | ID: mdl-30613289

ABSTRACT

Rational:Salmonella Enteritidis (S. Enteritidis) is a globally significant zoonotic foodborne pathogen which has led to large numbers of deaths in humans and caused economic losses in animal husbandry. S. Enteritidis invades host cells and survives within the cells, causing resistance to antibiotic treatment. Effective methods of elimination and eradication of intracellular S. Enteritidis are still very limited. Here we evaluated whether a new intracellular antibacterial strategy using iron oxide nanozymes (IONzymes) exerted highly antibacterial efficacy via its intrinsic peroxidase-like activity in vitro and in vivo.Methods: The antibacterial activities of IONzymes against planktonic S. Enteritidis, intracellular S. Enteritidis in Leghorn Male Hepatoma-derived cells (LMH), and liver from specific pathogen free (SPF) chicks were investigated by spread-plate colony count method and cell viability assay. Changes in levels of microtubule-associated protein light chain 3 (LC3), a widely used marker for autophagosomes, were analyzed by immunoblotting, immunofluorescence, and electron microscopy. Reactive oxygen species (ROS) production was also assessed in vitro. High-throughput RNA sequencing was used to investigate the effects of IONzymes on liver transcriptome of S. Enteritidis-infected chicks. Results: We demonstrated that IONzymes had high biocompatibility with cultured LMH cells and chickens, which significantly inhibited intracellular S. Enteritidis survival in vitro and in vivo. In addition, co-localization of IONzymes with S. Enteritidis were observed in autophagic vacuoles of LMH cells and liver of chickens infected by S. Enteritidis, indicating that IONzymes mediated antibacterial reaction of S. Enteritidis with autophagic pathway. We found ROS level was significantly increased in infected LMH cells treated with IONzymes, which might enhance the autophagic elimination of intracellular S. Enteritidis. Moreover, orally administered IONzymes decreased S. Enteritidis organ invasion of the liver and prevented pathological lesions in a chicken-infection model. Non-target transcriptomic profiling also discovered IONzymes could change hepatic oxidation-reduction and autophagy related gene expressions in the S. Enteritidis infected chickens. Conclusion: These data suggest that IONzymes can increase ROS levels to promote the antibacterial effects of acid autophagic vacuoles, and thus suppress the establishment and survival of invading intracellular S. Enteritidis. As a result, IONzymes may be a novel alternative to current antibiotics for the control of intractable S. Enteritidis infections.


Subject(s)
Ferric Compounds/administration & dosage , Peroxidase/administration & dosage , Salmonella Infections/drug therapy , Salmonella enteritidis/drug effects , Salmonella enteritidis/growth & development , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Chickens , Ferric Compounds/chemistry , Humans , Liver/microbiology , Nanostructures/chemistry , Peroxidase/chemistry , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Salmonella enteritidis/metabolism
19.
Sci Rep ; 7(1): 2389, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539642

ABSTRACT

To select metabolic biomarkers and differentially expressed genes (DEGs) associated with resistant-ascites syndrome (resistant-AS), we used innovative techniques such as metabolomics and transcriptomics to comparatively examine resistant-AS chickens and AS controls. Metabolomic evaluation of chicken serum using ultra-performance liquid chromatography-quadruple time-of-flight high-sensitivity mass spectrometry (UPLC-QTOF/HSMS) showed significantly altered lysoPC(18:1), PE(18:3/16:0), PC(20:1/18:3), DG(24:1/22:6/0:0), PS(18:2/18:0), PI(16:0/16:0), PS(18:0/18:1), PS(14:1/14:0), dihydroxyacetone, ursodeoxycholic acid, tryptophan, L-valine, cycloserine, hypoxanthine, and 4-O-Methylmelleolide concentrations on day 21 and LysoPC(18:0), LysoPE(20:1/0:0), LysoPC(16:0), LysoPE(16:0/0:0), hypoxanthine, dihydroxyacetone, 4-O-Methylmelleolide, LysoPC(18:2), and PC(14:1/22:1) concentrations on day 35, between the susceptible and resistant groups. Compared to the susceptible group, transcriptomic analysis of liver samples using RNA-seq revealed 413 DEGs on day 21 and 214 DEGs on day 35 in the resistant group. Additional evaluations using gene ontology (GO) indicate that significant enrichment occurred in the oxygen transportation, defensive reactions, and protein modifications of the decreased DEGs as well as in the cell morphological formation, neural development, and transforming growth factor (TGF)-beta signalling of the increased DEGs on day 21. Oxygen transportation was also significantly enriched for downregulated DEGs on day 35. The combinatory evaluation of the metabolome and the transcriptome suggests the possible involvement of glycerophospholipid metabolism in the development of resistant-AS in broilers.


Subject(s)
Ascites/genetics , Avian Proteins/genetics , Disease Resistance/genetics , Lipid Metabolism/genetics , Metabolome , Poultry Diseases/genetics , Transcriptome , Amino Acids/metabolism , Animals , Ascites/metabolism , Ascites/pathology , Avian Proteins/metabolism , Chickens , Cold Temperature , Gene Ontology , Hypoxanthine/metabolism , Liver/metabolism , Lysophospholipids/metabolism , Male , Molecular Sequence Annotation , Phospholipids/metabolism , Poultry Diseases/metabolism , Poultry Diseases/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ursodeoxycholic Acid/metabolism
20.
Cardiovasc Res ; 113(6): 692-704, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28444195

ABSTRACT

AIMS: Epigenetics may mediate the effects of environmental risk factors on disease, including heart disease. Thus, measuring the DNA methylome offers the opportunity to identify novel disease biomarkers and novel insights into disease mechanisms. The DNA methylation landscape of ascending aortic dissection (AD) and bicuspid aortic valve (BAV) with aortic aneurysmal dilatation remain uncharacterized. The present study aimed to explore the genome-wide DNA methylation landscape underpinning these two diseases. METHODS AND RESULTS: We used Illumina 450k DNA methylation beadarrays to analyse 21 ascending aorta samples, including 10 cases with AD, 5 with BAV and 6 healthy controls. We adjusted for intra-sample cellular heterogeneity, providing the first unbiased genome-wide exploration of the DNA methylation landscape underpinning these two diseases. We discover that both diseases are characterized by loss of DNA methylation at non-CpG sites. We validate this non-CpG hypomethylation signature with pyrosequencing. In contrast to non-CpGs, AD and BAV exhibit distinct DNA methylation landscapes at CpG sites, with BAV characterized mainly by hypermethylation of EZH2 targets. In the case of AD, integrative DNA methylation gene expression analysis reveals that AD is characterized by a dedifferentiated smooth muscle cell phenotype. Our integrative analysis further reveals hypomethylation associated overexpression of RARA in AD, a pattern which is also seen in cells exposed to smoke toxins. CONCLUSION: Our data supports a model in which increased cellular proliferation in AD and BAV underpins loss of methylation at non-CpG sites. Our data further supports a model, in which AD is associated with an inflammatory vascular remodeling process, possibly mediated by the epigenome and linked to environmental risk factors such as smoking.


Subject(s)
Aortic Aneurysm/genetics , Aortic Dissection/genetics , Aortic Valve/abnormalities , DNA Methylation , Epigenesis, Genetic , Heart Valve Diseases/genetics , Aortic Dissection/diagnosis , Aortic Dissection/pathology , Aorta/pathology , Aortic Aneurysm/diagnosis , Aortic Aneurysm/pathology , Aortic Valve/pathology , Bicuspid Aortic Valve Disease , Case-Control Studies , Cell Dedifferentiation , Cell Proliferation , Cells, Cultured , Genetic Predisposition to Disease , Genome-Wide Association Study , Heart Valve Diseases/diagnosis , Heart Valve Diseases/pathology , Humans , Muscle, Smooth, Vascular/pathology , Oligonucleotide Array Sequence Analysis , Phenotype , Retinoic Acid Receptor alpha/genetics , Smoking/adverse effects , Smoking/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...