Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(20)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35193130

ABSTRACT

Spin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInP2S6(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively. The chirality of helical pseudospin texture is coupled to the out-of-plane ferroelectric polarization. Furthermore, a large spin splitting due to the SOC effect can be found atKvalley, which can be regarded as the Zeeman effect under a valley-dependent pseudomagnetic field. The CIPS monolayer with Rashbaet aleffects provides a good platform for electrically controlled spin polarization physics.

2.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33690184

ABSTRACT

Using the first-principles calculations, we explore the nearly free electron (NFE) states in the transition-metal dichalcogenidesMX2(M= Mo, W;X= S, Se, Te) monolayers. It is found that both the external electric field and electron (not hole) injection can flexibly tune the energy levels of the NFE states, which can shift down to the Fermi level and result in novel transport properties. In addition, we find that the valley polarization can be induced by both electron and hole doping in MoTe2monolayer due to the ferromagnetism induced by the charge injection, which, however, is not observed in other five kinds ofMX2monolayers. We carefully check band structures of all theMX2monolayers, and find that the exchange splitting in the top of the valence band and the bottom of conduction band plays the key role in the ferromagnetism. Our researches enrich the electronic, spintronic, and valleytronic properties ofMX2monolayers.

3.
J Phys Condens Matter ; 29(47): 475803, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29094679

ABSTRACT

Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy. By performing first-principles calculations, we have examined two possible doping sites on a WS2 monolayer using three kinds of transition metal (TM) atoms (Mn, Fe and Co). It is found that the TM atoms prefer to stay on the W atom site. Additionally, differently from the case of Mn, doping Co and Fe atoms on the W vacancy can achieve perpendicular magnetic anisotropy with a much larger magnitude, which provides a bright prospect for generating atomic-scale magnets of storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...