Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 13(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37505007

ABSTRACT

The paper presents a new methodology for short-term (5-25 min) benchtop tests to evaluate the effectiveness of magnetic treatment of feed water for reducing mineral scaling on a reverse osmosis (RO) membrane. Scale deposition is measured at a controlled level of salt supersaturation in water flowing through an RO unit in once-through mode. A magnetic water conditioner is tested in a transient flow regime when variations of the permeate flux along the flow path are insignificant. Scale formation under these conditions is governed by salt crystallization on the membrane surface. The proposed method was implemented to investigate the influence of magnetic treatment on gypsum deposition on RO membranes in supersaturated aqueous CaSO4/NaCl solutions. The effects of magnetic water treatment on scale formation under our experimental conditions were found to be statistically insignificant with a confidence level of 95%. However, this outcome should not be considered to negate the potential efficiency of magnetic water treatment in specific applications. The proposed methodology of testing under a controlled level of salt supersaturation will also be useful for evaluating the efficiency of other water treatment technologies.

2.
Article in English | MEDLINE | ID: mdl-36159725

ABSTRACT

Spatiotemporal dynamics of many natural processes, such as elasticity, heat propagation, sound waves, and fluid flows are often modeled using partial differential equations (PDEs). Certain types of PDEs have closed-form analytical solutions, some permit only numerical solutions, some require appropriate initial and boundary conditions, and others may not have stable, global, or even well-posed solutions. In this paper, we focus on one-specific type of second-order PDE - the ultrahyperbolic wave equation in multiple time dimensions. We demonstrate the wave equation solutions in complex time (kime) and show examples of the Cauchy initial value problem in space-kime. We extend the classical formulation of the dynamics of the wave equation with respect to positive real longitudinal time. The solutions to the Cauchy boundary value problem in multiple time dimensions are derived in Cartesian, polar, and spherical coordinates. These include both bounded and unbounded spatial domains. Some example solutions are shown in the main text with additional web-based dynamic illustrations of the wave equation solutions in space-kime shown in the appendix. Solving PDEs in complex time has direct connections to data science, where solving under-determined linear modeling problems or specifying the initial conditions on limited spatial dimensions may be insufficient to forecast, classify, or predict a prospective value of a parameter or a statistical model. This approach extends the notion of data observations, anchored at ordered longitudinal events, to complex time, where observables need not follow a strict positive-real structural arrangement, but instead could traverse the entire kime plane.

3.
Neural Comput Appl ; 34(8): 6377-6396, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35936508

ABSTRACT

Many modern techniques for analyzing time-varying longitudinal data rely on parametric models to interrogate the time-courses of univariate or multivariate processes. Typical analytic objectives include utilizing retrospective observations to model current trends, predict prospective trajectories, derive categorical traits, or characterize various relations. Among the many mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-based linear modeling offers a unique algebraic approach that encodes different characterizations of the observed measurements in terms of state indices. This paper introduces a new method of representing, modeling, and analyzing repeated-measurement longitudinal data using a generalization of event order from the positive reals to the complex plane. Using complex time (kime), we transform classical time-varying signals as 2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for analyzing time-series data and offers unique opportunities to design novel inference, prediction, classification, and regression techniques based on the corresponding kimesurface manifolds. We define complex time and illustrate alternative time-series to kimesurface transformations. Using the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series and kimesurfaces. A proposed general tensor regression based linear model is validated using functional Magnetic Resonance Imaging (fMRI) data. This kimesurface representation method can be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-range longitudinal processes.

4.
Pharmaceutics ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138033

ABSTRACT

We demonstrate the ability to fabricate dosage forms of a poorly water-soluble drug by using wet stirred media milling of a drug powder to produce an aqueous suspension of nanoparticles and then print it onto a porous biocompatible film. Contrary to conventional printing technologies, a deposited material is pulled out from the nozzle. This feature enables printing highly viscous materials with a precise control over the printed volume. Drug (griseofulvin) nanosuspensions prepared by wet media milling were printed onto porous hydroxypropyl methylcellulose films prepared by freeze-drying. The drug particles retained crystallinity and polymorphic form in the course of milling and printing. The versatility of this technique was demonstrated by printing the same amount of nanoparticles onto a film with droplets of different sizes. The mean drug content (0.19-3.80 mg) in the printed films was predicted by the number of droplets (5-100) and droplet volume (0.2-1.0 µL) (R2 = 0.9994, p-value < 10-4). Our results also suggest that for any targeted drug content, the number-volume of droplets could be modulated to achieve acceptable drug content uniformity. Analysis of the model-independent difference and similarity factors showed consistency of drug release profiles from films with a printed suspension. Zero-order kinetics described the griseofulvin release rate from 1.8% up to 82%. Overall, this study has successfully demonstrated that the electro-hydrodynamic drop-on-demand printing of an aqueous drug nanosuspension enables accurate and controllable drug dosing in porous polymer films, which exhibited acceptable content uniformity and reproducible drug release.

5.
NPJ Microgravity ; 4: 21, 2018.
Article in English | MEDLINE | ID: mdl-30417085

ABSTRACT

Today's trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at high overheat. In contrast, this paper presents a new boiling regime that employs a vapor-air bubble residing on a small heater for minutes and driving cold water over the surface to provide high heat flux. Single-bubble boiling of water was investigated under normal gravity and low gravity in parabolic flights. Experiments demonstrated a negligible effect of gravity level on the rate of heat transfer from the heater. Due to self-adjustment of the bubble size, the heat flux provided by boiling rose linearly up with increasing heater temperature and was not affected by a gradually rising water temperature. The fast response and stable operation of single-bubble boiling over a broad range of temperatures pave the way for development of new devices to control heat transfer by forming surface domains with distinct thermal properties and wettability. The bubble lifetime can be adjusted by changing the water temperature. The ability of heating water on millimeter scales far above 100 °C without an autoclave or a powerful laser provides a new approach for processing of biomaterials and chemical reactions.

6.
Biomaterials ; 149: 51-62, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28992510

ABSTRACT

The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation.


Subject(s)
Biocompatible Materials/chemistry , Mesenchymal Stem Cells/cytology , Tissue Scaffolds , Adolescent , Adult , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Cartilage/cytology , Cell Adhesion , Cell Culture Techniques , Cell Differentiation , Chondrogenesis , Electromagnetic Phenomena , Female , Humans , Male , Mechanical Phenomena , Osteogenesis , Regeneration , Tissue Engineering , Young Adult
7.
Phys Rev Lett ; 114(5): 054501, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25699447

ABSTRACT

A cone-shaped meniscus of electrified fluids, often called a Taylor cone, is observed in rain drops and lightning and employed in various physical instruments and experimental techniques, but the way it evolves from a rounded shape to a cone is a long-standing puzzle. Earth's gravity and microgravity measurements on the meniscus whose height is just shy of droplet ejection reveal that field-driven cusp evolution exhibits a universal self-similarity insensitive to the forcing field and scaled by the fluid surface tension and density. Our work paves the way for dynamic control of field-driven phenomena in fluids.

8.
Int J Pharm ; 455(1-2): 93-103, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23911341

ABSTRACT

Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution.


Subject(s)
Desiccation/methods , Drug Compounding/methods , Griseofulvin/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Convection , Drug Delivery Systems , Glycerol/chemistry , Hypromellose Derivatives , Methylcellulose/analogs & derivatives , Methylcellulose/chemistry , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Plasticizers/chemistry , Powder Diffraction , Sodium Dodecyl Sulfate/chemistry , Solubility , Temperature , Water/chemistry , X-Ray Diffraction
9.
J Pharm Sci ; 101(7): 2523-33, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22527973

ABSTRACT

Noncontact drop-on-demand (DOD) dosing is a promising strategy for manufacturing of personalized dosage units. However, current DOD methods developed for printing chemically and thermally stable, low-viscosity inks are of limited use for pharmaceuticals due to fundamentally different functional requirements. To overcome their deficiency, we developed a novel electrohydrodynamic (EHD) DOD (Appl, Phys, Lett. 97, 233501, 2010) that operates on fluids of up to 30 Pa·s in viscosity over a wide range of droplet sizes and provides a precise control over the droplet volume. We now evaluate the EHD DOD as a method for fabrication of dosage units by printing drug solutions on porous polymer films prepared by freeze-drying. Experiments were carried out on ibuprofen and griseofulvin, as model poorly water-soluble drugs, polyethylene glycol 400, as a drug carrier, and hydroxypropyl methylcellulose films. The similarities between drug release profiles from different dosage units were assessed by model-independent difference, f(1) , and similarity, f(2) , factors. The results presented show that EHD DOD offers a powerful tool for the evolving field of small-scale pharmaceutical technologies for tailoring medicines to individual patient's needs by printing a vast array of predefined amounts of therapeutics arranged in a specific pattern on a porous film.


Subject(s)
Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Pharmaceutical Preparations/administration & dosage , Polymers/chemistry , Technology, Pharmaceutical/instrumentation , Equipment Design , Freeze Drying , Porosity , Solubility , X-Ray Diffraction
10.
Electrophoresis ; 32(18): 2559-68, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21853447

ABSTRACT

A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters, which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained are used to consider the potential of using AC dielectrophoretic filtration and provide critical design guidelines for the development of a filter based on the retention capability of challenge particles.


Subject(s)
Electrophoresis/instrumentation , Filtration/instrumentation , Lubricants/chemistry , Microfluidics/instrumentation , Oils/chemistry , Aluminum Oxide , Electrodes , Equipment Design , Filtration/methods , Glass , Microspheres , Particle Size , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...