Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cancer Metab ; 10(1): 22, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36474242

ABSTRACT

BACKGROUND: Protein arginine methyltransferase 5 (PRMT5) is upregulated in multiple tumors and plays a pivotal role in cancer cell proliferation. However, the role of PRMT5 in colorectal cancer remains poorly understood. METHODS: We detected the expression level of PRMT5 and glycolytic enzymes using online databases and colorectal cancer cell lines by immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. And MTT and colony formation assays were conducted to investigate cell proliferation. Then, we evaluated ECAR and OCR levels using a biological energy analyzer to investigate the energy status of colorectal cancer, and the transcriptional regulation was detected by dual luciferase reporter assay and ChIP assay. Finally, the efficacy of combined treatment of tadalafil and 5-FU was verified. RESULTS: PRMT5 was highly expressed in colorectal cancer tissues compared with their normal counterparts and correlated with poor prognosis in CRC patients. Then, we demonstrated that PRMT5 knockdown or loss of function attenuated the viability of CRC cells, while overexpression of PRMT5 promoted cell proliferation. Mechanistically, PRMT5 enhanced glycolysis through transcriptionally activating LDHA expression. In addition, the PRMT5 inhibitor, tadalafil, rendered CRC cells sensitive to antitumor agent 5-FU in vitro and in vivo. CONCLUSIONS: Our data indicates that PRMT5 promoted colorectal cancer proliferation partially through activating glycolysis and may be a potential target for colorectal cancer therapy.

2.
J Chromatogr A ; 1681: 463456, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36095973

ABSTRACT

In this work, a disposable and inexpensive bamboo stir bar containing an organic membrane was constructed to perform stir bar sorptive extraction (SBSE), followed by portable mass spectrometry to achieve on-site detection of four residual drugs (malachite green, crystal violet and their metabolites) in fishes. The entire method uses only microliter quantities of organic solvents, enabling environmentally friendly pretreatment. The portable mass spectrometer can simultaneously detect four target analytes in a sample in approximately ten seconds. Under the optimal conditions, the proposed method was successfully applied to simultaneously detect four drugs in fish samples with detection limits of 0.16-0.59 µg/kg. The spiked recoveries for mandarin fish and lateolabrax maculatus were 74.5-96.5%, with relative standard deviations (RSD) of 4.4-16%. In addition, the matrix effects of the four analytical targets in the method were experimentally verified to range from 7.30% to 20.62%. The method can potentially be extended to the on-site detection of other veterinary drug residues in foods.


Subject(s)
Gentian Violet , Veterinary Drugs , Animals , Fishes , Limit of Detection , Mass Spectrometry , Reproducibility of Results , Rosaniline Dyes , Solvents
3.
Adv Mater ; 34(6): e2106222, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34813678

ABSTRACT

Named after the two-faced Roman god of transitions, transition metal dichalcogenide (TMD) Janus monolayers have two different chalcogen surfaces, inherently breaking the out-of-plane mirror symmetry. The broken mirror symmetry and the resulting potential gradient lead to the emergence of quantum properties such as the Rashba effect and the formation of dipolar excitons. Experimental access to these quantum properties, however, hinges on the ability to produce high-quality 2D Janus monolayers. Here, these results introduce a holistic 2D Janus synthesis technique that allows real-time monitoring of the growth process. This prototype chamber integrates in situ spectroscopy, offering fundamental insights into the structural evolution and growth kinetics, that allow the evaluation and optimization of the quality of Janus monolayers. The versatility of this method is demonstrated by synthesizing and monitoring the conversion of SWSe, SNbSe, and SMoSe Janus monolayers. Deterministic conversion and real-time data collection further aid in conversion of exfoliated TMDs to Janus monolayers and unparalleled exciton linewidth values are reached, compared to the current best standard. The results offer an insight into the process kinetics and aid in the development of new Janus monolayers with high optical quality, which is much needed to access their exotic properties.

4.
Exp Cell Res ; 409(1): 112890, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34695437

ABSTRACT

Formation of osteoclasts is known to be closely associated with osteoporosis progression. LOX is a key enzyme that catalyzes the synthesis of collagen, which is the new mediator in osteoclast formation. However, the effect of LOXG473A on of osteoclast formation needs to be explored. Thereby, we sought to explore the effect of LOXG473A on formation of osteoclasts and its underlying mechanism. To investigate the function of LOXG473A in osteoclast formation, Raw264.7 cells were stably transfected with LOX-WT or LOX-MUT (LOXG473A). Real-time PCR and western blotting were used to detect the relative levels of osteoclast formation related genes and proteins. TRAP staining and immunofluorescence staining were used to test the ability of Raw264.7 cells to form osteoclasts and the ability of cells to form rings, respectively. Bone erosion assay was used to test bone resorptive activity. The data indicated that LOXG473A significantly enhanced the ability of osteoclasts forming, ring-forming and bone resorpting in Raw264.7 cells. Mechanically, LOXG473A upregulated the expressions of NFATC1, ACP5, CTSK, IL-6, and the proportion of p-JAK2/JAK2 and p-STAT3/STAT3, thereby promoting the formation of osteoclasts. In conclusion, we have verified that LOXG473A induces the proliferation of osteoclasts in Raw264.7 cells via IL-6/JAK2/STAT3 signaling, suggesting a novel strategy for studying osteoporosis.


Subject(s)
Extracellular Matrix Proteins/metabolism , Interleukin-6/metabolism , Janus Kinase 2/metabolism , Osteoclasts/metabolism , Protein-Lysine 6-Oxidase/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , Bone Resorption/metabolism , Cell Differentiation/physiology , Cell Line , Mice , Osteoclasts/physiology , Osteogenesis/physiology , RAW 264.7 Cells
5.
Am J Transl Res ; 13(8): 9479-9484, 2021.
Article in English | MEDLINE | ID: mdl-34540069

ABSTRACT

OBJECTIVE: This research was designed to explore the application evaluation of evidence-based nursing (EBN) in pain nursing of patients with advanced lung cancer (LC). METHODS: A total of 108 advanced LC patients admitted to our hospital were randomized into a control group and an observation group, each with 54 patients. Those in the control group were given conventional nursing measures and those in the observation group were treated by EBN measures based on the former. The scores of pain levels, sleep quality, and negative emotions (anxiety and depression), quality of life, and nursing satisfaction of the two groups were compared. RESULTS: Compared with the control group, the sleep quality score, quality of life, and nursing satisfaction of patients in the observation group were higher. The scores of pain levels and negative emotions (anxiety and depression) were lower, with statistically marked differences (all P<0.05). CONCLUSION: EBN has good clinical practicability in the pain of advanced LC, improving patients' sleep, quality of life after treatment, and nursing satisfaction. It can be recommended in clinical practice.

6.
Sci Adv ; 7(37): eabf4387, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516763

ABSTRACT

The search for materials with flat electronic bands continues due to their potential to drive strong correlation and symmetry breaking orders. Electronic moirés formed in van der Waals heterostructures have proved to be an ideal platform. However, there is no holistic experimental picture for how superlattices modify electronic structure. By combining spatially resolved angle-resolved photoemission spectroscopy with optical spectroscopy, we report the first direct evidence of how strongly correlated phases evolve from a weakly interacting regime in a transition metal dichalcogenide superlattice. By comparing short and long wave vector moirés, we find that the electronic structure evolves into a highly localized regime with increasingly flat bands and renormalized effective mass. The flattening is accompanied by the opening of a large gap in the spectral function and splitting of the exciton peaks. These results advance our understanding of emerging phases in moiré superlattices and point to the importance of interlayer physics.

7.
ACS Nano ; 14(11): 15626-15632, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33090763

ABSTRACT

The family of layered BiTeX (X = Cl, Br, I) compounds are intrinsic Janus semiconductors with giant Rashba-splitting and many exotic surface and bulk physical properties. To date, studies on these materials required mechanical exfoliation from bulk crystals which yielded thick sheets in nonscalable sizes. Here, we report epitaxial synthesis of Janus BiTeCl and BiTeBr sheets through a nanoconversion technique that can produce few triple layers of Rashba semiconductors (<10 nm) on sapphire substrates. The process starts with van der Waals epitaxy of Bi2Te3 sheets on sapphire and converts these sheets to BiTeCl or BiTeBr layers at high temperatures in the presence of chemically reactive BiCl3/BiBr3 inorganic vapor. Systematic Raman, XRD, SEM, EDX, and other studies show that highly crystalline BiTeCl and BiTeBr sheets can be produced on demand. Atomic level growth mechanism is also proposed and discussed to offer further insights into growth process steps. Overall, this work marks the direct deposition of 2D Janus Rashba materials and offers pathways to synthesize other Janus compounds belonging to MXY family members.

8.
MethodsX ; 7: 100815, 2020.
Article in English | MEDLINE | ID: mdl-32195135

ABSTRACT

Palygorskite is a kind of crystalline hydrated magnesium aluminum silicate mineral with micro-fibrous morphology. Due to the large specific surface area, moderate cationic exchange capacity and pronounced adsorption properties, it has been widely used in many fields. In order to enhance the loading capacity and adjust the microstructure of palygorskite (Pal) crystal, series of three-dimensional palygorskite carriers (3D Pal) with different pore size were fabricated through grafting from or grafting onto method. Due to the functional and cross-linked molecules act as upholder reagents, the specific surface of individual palygorskite is fully utilized and the load capacity is greatly improved. The porosity and pore size of 3D palygorskite based carrier also can be regulated by the length of organic molecular chain segments. The successful preparation of 3D Pal-based carrier provides a new way for surface grafting, modification or preparing 3D carrier of palygorskite and other minerals.•The developed method allows fabricating three-dimensional palygorskite based carriers by covalent bonding method.•The pore size of the as-prepared carriers can be conveniently adjusted by length of the bonded molecular chain.

9.
Angew Chem Int Ed Engl ; 59(24): 9408-9413, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32160382

ABSTRACT

A modulated bi-phase synthesis towards large-scale manganese 1,4-benzenedicarboxylate (MnBDC) MOFs with a precise control over their morphology (bulk vs. layered) is presented. Metal precursors and organic ligands are separated to reduce the kinetic reaction rates for better control over the crystallization process. Based on scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy studies, the continuous ligand supply along with the presence of pyridine capping agent are highly effective in promoting the layer-by-layer growth and achieving large crystal sizes. Once layered MnBDC is stabilized, topotactic intercalation chemistry was used to demonstrate the feasibility of bromine intercalation on these layered materials. Bromine intercalation is possible between the MOFs layers for the first time. Bromine intercalation causes colossal reduction in layered MnBDC band gap while it has no observable effect on bulk MOFs.

10.
Adv Mater ; 32(12): e1907364, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31990405

ABSTRACT

The application of high pressure allows control over the unit cell and interatomic spacing of materials without any need for new growth methods or processing while accessing their materials properties in situ. Under these extreme pressures, materials may assume new structural phases and reveal novel properties. Here, unusual phase transition and band renormalization effects in 2D van der Waals Ruddlesden-Popper hybrid lead halide perovskites, which have shown extraordinary optical properties and immense potential in light emission and conversion technologies, are reported. The results show that (CH3 (CH2 )3 NH3 )2 (CH3 NH3 )Pb2 Br7 (n = 2) layers undergo two distinct phase transitions related to PbBr6 octahedra, butylammonium (BA), and methylammonium (MA) molecule tilting motion that leads to rather unique/anomalous bandgap variation with pressure. In contrast, (CH3 (CH2 )3 NH3 )PbBr4 (n = 1) lacks MA molecules and possesses only one pressure-induced phase transition related to PbBr6 octahedra and BA tilting. In this range, the bandgap reduces monotonically, much similar to other inorganic semiconductors and display surprisingly large redshift from 3 to 2.4 eV. Together with theoretical calculations, this study offers unique insights into these pressure-induced changes and extends the understanding of these highly anisotropic layered soft organic perovskite materials under extreme conditions.

11.
RSC Adv ; 10(63): 38227-38232, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517551

ABSTRACT

We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe2 nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI2 and H2Se precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe2) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials.

12.
Nanoscale Adv ; 2(4): 1443-1448, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-36132307

ABSTRACT

We demonstrate a high-pressure soft sputtering technique that can grow large area 1T' phase MoTe2 sheets on HOPG and Al2O3 substrates at temperatures as low as 300 °C. The results show that a single Mo/Te co-sputtering step on heated substrates produces highly defected films as a result of the low Te sticking coefficient. The stoichiometry is significantly improved when a 2-step technique is used, which first co-sputters Mo and Te onto an unheated substrate and then anneals the deposited material to crystalize it into 1T' phase MoTe2. A MoTe2-x 1T' film with the lowest Te vacancy content (x = 0.14) was synthesized using a 300 °C annealing step, but a higher processing temperature was prohibited due to MoTe2 decomposition with an activation energy of 80.7 kJ mol-1. However, additional ex situ thermal processing at ∼1 torr tellurium pressure can further reduce the Te-vacancy (VTe) concentration, resulting in an improvement in the composition from MoTe1.86 to MoTe1.9. Hall measurements indicate that the films produced with the 2-step in situ process are n-type with a carrier concentration of 4.6 × 1014 cm-2 per layer, presumably from the large VTe concentration stabilizing the 1T' over the 2H phase. Our findings (a) demonstrate that large scale synthesis of tellurium based vdW materials is possible using industrial growth and processing techniques and (b) accentuate the challenges in producing stoichiometric MoTe2 thin films.

13.
Nat Mater ; 18(10): 1065-1070, 2019 10.
Article in English | MEDLINE | ID: mdl-31384030

ABSTRACT

The Berry phase of Bloch states can have profound effects on electron dynamics1-3 and lead to novel transport phenomena, such as the anomalous Hall effect and the valley Hall effect4-6. Recently, it was predicted that the Berry phase effect can also modify the exciton states in transition metal dichalcogenide monolayers, and lift the energy degeneracy of exciton states with opposite angular momentum through an effective valley-orbital coupling1,7-11. Here, we report the observation and control of the Berry phase-induced splitting of the 2p exciton states in monolayer molybdenum diselenide (MoSe2) using the intraexciton optical Stark spectroscopy. We observe the time-reversal-symmetric analogue of the orbital Zeeman effect resulting from the valley-dependent Berry phase, which leads to energy difference of +14 (-14) meV between the 2p+ and 2p- exciton states in the K (K') valley, consistent with the ordering from our ab initio GW-Bethe-Salpeter equation results. In addition, we show that the light-matter coupling between intraexciton states is remarkably strong, leading to a prominent valley-dependent Autler-Townes doublet under resonant driving. Our study opens up pathways to coherently manipulate the quantum states and excitonic excitation with infrared radiation in two-dimensional semiconductors.

14.
ACS Appl Mater Interfaces ; 11(5): 5492-5498, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30620173

ABSTRACT

Theory predicts that a large spontaneous electric polarization and concomitant inversion symmetry breaking in GeSe monolayers result in a strong shift current in response to their excitation in the visible range. Shift current is a coherent displacement of electron density on the order of a lattice constant upon above-bandgap photoexcitation. A second-order nonlinear effect, it is forbidden by the inversion symmetry in the bulk GeSe crystals. Here, we use terahertz (THz) emission spectroscopy to demonstrate that ultrafast photoexcitation with wavelengths straddling both edges of the visible spectrum, 400 and 800 nm, launches a shift current in the surface layer of a bulk GeSe crystal, where the inversion symmetry is broken. The direction of the surface shift current determined from the observed polarity of the emitted THz pulses depends only on the orientation of the sample and not on the linear polarization direction of the excitation. Strong absorption by the low-frequency infrared-active phonons in the bulk of GeSe limits the bandwidth and the amplitude of the emitted THz pulses. We predict that reducing GeSe thickness to a monolayer or a few layers will result in a highly efficient broadband THz emission. Experimental demonstration of THz emission by the surface shift current in bulk GeSe crystals puts this 2D material forward as a candidate for next-generation shift current photovoltaics, nonlinear photonic devices, and THz sources.

15.
Adv Mater ; 30(52): e1802497, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30387198

ABSTRACT

Large-scale synthesis of van der Waals (vdW) metal-organic framework (MOF) nanosheets with controlled crystallinity and interlayer coupling strength is one of the bottlenecks in 2D materials that has limited its successful transition to large-scale applications. Here, scalable synthesis of mBDC (m = Zn and Cu) 2D MOFs at large scales through a biphase method is demonstrated. The results show replacing water molecules with pyridine eliminates hydrogen bond formation at metal cluster sites. This prohibits tight coupling across adjacent MOF layers and sustains controllable 2D vdW MOF growth. It is further shown that control over the growth speed, crystallinity, and thickness can be achieved by addition of a controlled amount of triethylamine and formic acid to achieve highly crystalline vdW MOF nanosheets with extraordinarily high aspect ratio. The described synthesis route can easily be scaled up for large-scale production either by deposition onto desired substrates or in crystalline layered powder form. Owing to its large lateral size, vdW nature, and high crystallinity, it is possible to perform atomic force microscopy, Kelvin probe force microscopy, and Raman measurements on the 2D MOFs. The results not only establish their vibrational properties and layer-dependent responses but also show striking differences from other 2D inorganic materials.

16.
Nanoscale ; 10(33): 15654-15660, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30091441

ABSTRACT

Alloying in semiconductors has enabled many civilian technologies in electronics, optoelectronics, photonics, and others. While the alloying phenomenon is well established in traditional bulk semiconductors owing to a vast array of available ternary phase diagrams, alloying in 2D materials still remains at its seminal stages. This is especially true for transition metal trichalcogenides (TMTCs) such as TiS3 which has been recently predicted to be a direct gap, high carrier mobility, pseudo-1D semiconductor. In this work, we report on an unusual alloying rejection behavior in TiS3(1-x)Se3x vdW crystals. TEM, SEM, EDS, and angle-resolved Raman measurements show that only a miniscule amount (8%) of selenium can be successfully alloyed into a TiS3 host matrix despite vastly different precursor amounts as well as growth temperatures. This unusual behavior contrasts with other vdW systems such as TiS2(1-x)Se2x, MoS2(1-x)Se2x, Mo1-xWxS2, WS2(1-x)Se2x, where continuous alloying can be attained. Angle-resolved Raman and kelvin probe force microscopy measurements offer insights into how selenium alloying influences in-plane structural anisotropy as well as electron affinity values of exfoliated sheets. Our cluster expansion theory calculations show that only the alloys with a small amount of Se can be attained due to energetic instability above/below a certain selenium concentration threshold in the ternary phase diagrams. The overall findings highlight potential challenges in achieving stable Ti based TMTCs alloys.

17.
Science ; 360(6391): 893-896, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29798880

ABSTRACT

Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS2)-tungsten diselenide (WSe2) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.

18.
ACS Appl Mater Interfaces ; 9(51): 44625-44631, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29192495

ABSTRACT

Recent studies have shown that tellurium-based two-dimensional (2D) crystals undergo dramatic structural, physical, and chemical changes under ambient conditions, which adversely impact their much desired properties. Here, we introduce a diazonium molecule functionalization-based surface engineering route that greatly enhances their environmental stability without sacrificing their much desired properties. Spectroscopy and microscopy results show that diazonium groups significantly slow down the surface reactions, and consequently, gallium telluride (GaTe), zirconium telluride (ZrTe3), and molybdenum ditelluride (MoTe2) gain strong resistance to surface transformation in air or when immersed under water. Density functional theory calculations show that functionalizing molecules reduce surface reactivity of Te-containing 2D surfaces by chemical binding followed by an electron withdrawal process. While pristine surfaces structurally decompose because of strong reactivity of Te surface atoms, passivated functionalized surfaces retain their structural anisotropy, optical band gap, and emission characteristics as evidenced by our conductive atomic force microscopy, photoluminescence, and absorption spectroscopy measurements. Overall, our findings offer an effective method to increase the stability of these environmentally sensitive materials without impacting much of their physical properties.

19.
Nanoscale ; 9(34): 12288-12294, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28809419

ABSTRACT

We report on the vibrational (Raman) spectrum and structural transformation of semiconducting pseudo-1D GaTe and ZrTe3 nanomaterials driven by ambient molecular interactions at the nanoscale by angle-resolved Raman spectroscopy, atomic force microscopy (AFM), and environmental X-ray photoelectron (XPS) measurements. The results show that tellurium containing pseudo-1D materials undergo drastic structural and physical changes within a week. During this process, new Raman peaks start to emerge and surface roughness increases substantially. Surprisingly, aged Raman spectra of GaTe, ZrTe3, and α-TeOx show striking similarities suggesting that oxidation of tellurium takes place. Careful, environmental tests reveal that the interaction between GaTe and H2O molecules forms Te-O bonds at the outermost layers of GaTe which leads to newly emerging Raman peaks, a much reduced Schottky junction current density, and an anisotropic to isotropic structural transition. These findings offer fresh interpretation of the aging mechanisms for these material systems, provide new interpretation of the Raman spectrum of aged GaTe which was previously presumed to be of the hexagonal phase, and introduce an anisotropic to isotropic transformation effect induced by molecular interactions on the surface.

20.
Adv Mater ; 29(34)2017 Sep.
Article in English | MEDLINE | ID: mdl-28692772

ABSTRACT

Chemical vapor deposition and growth dynamics of highly anisotropic 2D lateral heterojunctions between pseudo-1D ReS2 and isotropic WS2 monolayers are reported for the first time. Constituent ReS2 and WS2 layers have vastly different atomic structure, crystallizing in anisotropic 1T' and isotropic 2H phases, respectively. Through high-resolution scanning transmission electron microscopy, electron energy loss spectroscopy, and angle-resolved Raman spectroscopy, this study is able to provide the very first atomic look at intimate interfaces between these dissimilar 2D materials. Surprisingly, the results reveal that ReS2 lateral heterojunctions to WS2 produce well-oriented (highly anisotropic) Re-chains perpendicular to WS2 edges. When vertically stacked, Re-chains orient themselves along the WS2 zigzag direction, and consequently, Re-chains exhibit six-fold rotation, resulting in loss of macroscopic scale anisotropy. The degree of anisotropy of ReS2 on WS2 largely depends on the domain size, and decreases for increasing domain size due to randomization of Re-chains and formation of ReS2 subdomains. Present work establishes the growth dynamics of atomic junctions between novel anisotropic/isotropic 2D materials, and overall results mark the very first demonstration of control over anisotropy direction, which is a significant leap forward for large-scale nanomanufacturing of anisotropic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...