Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Langenbecks Arch Surg ; 409(1): 146, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691172

ABSTRACT

OBJECTIVE: In this paper, a single-hand-operated hepatic pedicle clamp was introduced, and its application value in laparoscopic liver tumor resection was preliminarily discussed. METHODS: The clinical data of 67 patients who underwent laparoscopic liver tumor resection at the First Affiliated Hospital of Wannan Medical College from March 2019 to October 2023 were retrospectively analyzed. The Pringle maneuver was performed with a hepatic pedicle clamp during the operation. The preoperative, intraoperative and postoperative clinical data were observed and recorded. RESULTS: Sixty-seven patients had a median block number, block time, intraoperative blood loss, and postoperative length of hospital stay of 4, 55 min, 400 ml, and 7 days, respectively. The average operation time was 304.9±118.4 min, the time required for each block was 3.2±2.4 s, and the time required for each removed block was 2.6±0.7 s. None of the patients developed portal vein thrombosis or hepatic artery aneurysm formation. CONCLUSION: The hepatic pedicle clamping clamp is simple to use in laparoscopic hepatectomy, optimizes the operation process, and has a reliable blocking effect. It is recommended for clinical application.


Subject(s)
Hepatectomy , Laparoscopy , Liver Neoplasms , Humans , Hepatectomy/methods , Male , Female , Middle Aged , Retrospective Studies , Liver Neoplasms/surgery , Laparoscopy/methods , Aged , Constriction , Adult , Operative Time , Length of Stay , Blood Loss, Surgical/prevention & control , Blood Loss, Surgical/statistics & numerical data , Treatment Outcome
2.
J Cancer ; 15(7): 2033-2044, 2024.
Article in English | MEDLINE | ID: mdl-38434984

ABSTRACT

Background: It is crucial to probe into the biological effect and mechanism of miRNA-485-5p regulating keratin 17 (KRT17) in pancreatic cancer (PC) to understand its pathogenesis and identify potential biological targets. Methods: The bioinformatics means were used to evaluate the clinical significance of KRT17 expression in the Cancer Genome Atlas (TCGA) database. TargetScan database analysis in conjunction with dual luciferase and RNA Immunoprecipitation (RIP) experiments was used to probe the interaction relationship of miRNA-485-5p with KRT17. The expression of miRNA-485-5p and KRT17 in PC tissue and cancer cell lines was detected by Q-PCR paired with western blot assay. The biological function of miRNA-485-5p in regulating KRT17 was investigated in the PC cell line via gene silencing/overexpression technique. A western blot experiment was utilized to investigate the regulatory effect of KRT17 on cell cycle-related proteins and the FAK/Src/ERK signal pathway. Results: The level of KRT17 was increased in PC tissues and this significantly decreased the survival rate of PC patients. TargetScan in combination with dual luciferase and RIP experiments verified the miRNA-485-5p target KRT17. The expression of KRT17 was high in the PC cell line, although the expression of miRNA-485-5p was low. Silencing KRT17 or overexpression of miRNA-485-5p significantly inhibited PC cell viability, proliferation, invasion, and colony formation, while promoting apoptosis. Overexpression of KRT17 drastically reversed the function of miRNA-485-5p. The silenced KRT17 remarkably downregulated the expression of cyclinD1, Cyclin Dependent Kinase 1 (CDK1), CDK2, Phospho-Focal Adhesion Kinase (p-FAK), p-Src, and p-ERK proteins in the PC cells. Conclusion: Generally, an essential signaling cascade of miRNA-485-5p/KRT17/FAK/Src/ERK influences the biological functions of PC cells.

3.
Article in English | MEDLINE | ID: mdl-38418753

ABSTRACT

Integrin ß6 (ITGB6) is upregulated in multiple tumor types and elevated ITGB6 levels have been detected in patients with chronic pancreatitis. However, the role of ITGB6 in pancreatic fibrosis and cancer remains to be elucidated. In the present study, ITGB6 expression was assessed using western blotting and qRT-PCR. Besides, cell proliferation, cycling, migration, and invasion were evaluated using CCK-8, flow cytometry, wound healing, and transwell assays, respectively. The expression of fibrosis and JAK2/STAT3 signaling markers was detected by western blotting and immunofluorescence analysis. Moreover, nude mice were subcutaneously injected with co-cultured cell suspensions to establish an in vivo model. The results showed that ITGB6 was highly expressed in pancreatic cancer tissues and TGF-ß-induced pancreatic stellate cells (PSCs). Inhibition of ITGB6 expression in PSCs resulted in clear inhibition of activated PSC proliferation, migration, and fibrogenesis. Additionally, reduced ITGB6 expression inhibits the JAK2/STAT3 signaling pathway. Interestingly, activators of the JAK2/STAT3 signaling pathway reversed the effects of ITGB6 disruption on PSCs. Activated PSCs notably promoted the proliferation, invasion, and migration of pancreatic cancer cells in a co-culture assay. In contrast, activated PSCs with low ITGB6 expression failed to significantly affect the malignancy of pancreatic cancer cells. Moreover, in vivo results showed that interference with ITGB6 inhibited the activation of PSCs and promoted the development of pancreatic cancer. Silencing ITGB6 inhibited the proliferation, migration, and fibrosis-like effects of activated PSCs and indirectly inhibited the metastasis and malignant process of pancreatic cancer by inhibiting the JAK2/STAT3 signaling pathway. Therefore, ITGB6 is a potential candidate target for pancreatic cancer prevention and treatment.

4.
Food Chem Toxicol ; 179: 113978, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37532171

ABSTRACT

3-monochloropropane-1,2-diol esters (3-MCPDEs) and glycidyl esters (GEs) are food contaminants and have arisen continuous attention due to their toxicity, especially towards infants. Current risk assessment of these contaminants was mostly employing deterministic approaches, lacking quantitative characterization of the likelihood, incidence, or severity of the risks involved. Herein, 3-MCPDE and GE levels in 46 representative infant formulas (IFs) from Chinese market were determined by GC-MS/MS. Then, combining the occurrence data and consumption data from China National Food Consumption Survey, the Monte Carlo simulation-based probabilistic model for risk assessment of 3-MCPDEs and GEs in IFs from Chinese market was established. The results showed that all P90 (90th percentiles) hazard quotient values were below 1, demonstrating 3-MCPDEs didn't pose health risks to most populations aged 0-36 months old. However, for 0-12 months old groups, P10 (10th percentiles) margin of exposure values were all below 25000, indicating GEs may pose potential risks to 10% of this group. Uncertainty analysis revealed that the probabilistic model had considered uncertainties of model input and distribution, and realized refined assessment. This study is the first report on probabilistic assessment of 3-MCPDEs and GEs in IFs, which also provided references for the formulation of related regulatory limits in China.


Subject(s)
Food Contamination , alpha-Chlorohydrin , Infant , Humans , Infant, Newborn , Child, Preschool , Food Contamination/analysis , Infant Formula/analysis , Esters , Tandem Mass Spectrometry , Monte Carlo Method , alpha-Chlorohydrin/analysis , Risk Assessment
5.
Food Chem ; 399: 134018, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36055069

ABSTRACT

Herein, a modified indirect method was established for the determination of 3-monochloropropane-1,2-diol esters (3-MCPDEs) and glycidyl esters (GEs), employing magnetic solid phase extraction by boronic acid-functionalized magnetic nanoparticles to replace the traditional clean-up procedure. Compared with routine methods, it has been proved to be more sensitive with limits of detection in the range of 0.02-1.5 µg/kg and less susceptible to contamination of phenylboronic acid derivatives and fatty acid methyl esters. The proposed method was applied to analyze 42 samples covering the entire infant formula (IF) production chain. Results revealed that homogenization process contributed 79-91 % of the total growth of the contaminants due to the vegetable oil addition, while the following evaporation and spray-drying processes contributed 9-21 % of the total growth owing to involved heat treatment. The GE levels in final IF products exceeded the maximum level set by EU regulation 2020/1322, indicating quality safety concerns in the production chain.


Subject(s)
Esters , alpha-Chlorohydrin , Esters/analysis , Fatty Acids/analysis , Food Contamination/analysis , Humans , Infant , Infant Formula/analysis , Magnetic Phenomena , Solid Phase Extraction , alpha-Chlorohydrin/analogs & derivatives , alpha-Chlorohydrin/analysis
6.
Article in English | MEDLINE | ID: mdl-36274269

ABSTRACT

Lactoferrin (LF), a natural iron regulating glycoprotein, exists in animal milk and plays multiple beneficial roles. Bovine LF is obtained by separation and purification from cow's milk, and has been added as a food additive to functional foods and infant formula now. Therefore, accurate analysis of LF in these foods is very important, but there are challenges such as poor selective extraction and separation efficiency. In this work, considering the cis-diol in LF, boron-doped titania (B-doped TiO2) material was prepared for selectively enrich LF from dairy products. In order to increase the saturation capacity of extracted LF, the amount of boron for doping was optimized, and maximum binding capacity of 63.9 mg g-1 was achieved when the atomic ratio of B to Ti was 1.65 with improved affinity in terms of KD value. In addition, the primary parameters affecting extraction efficiency such as extraction time, extraction pH, desorption time, and desorption solution were also optimized. The method of dispersive solid phase extraction based on B-doped TiO2 combined with ultra-high performance liquid chromatography-ultraviolet detection (UHPLC-UV) was developed and validated. The material greatly reduced the cost of sample pretreatment and the method also was applied to detect the LF in different dairy products such as liquid milk, fermented milk, and infant formula. This method could be used for routine analysis, separation and purification of LF.


Subject(s)
Boron , Lactoferrin , Female , Cattle , Animals , Lactoferrin/analysis , Boron/analysis , Milk/chemistry , Infant Formula
7.
J Oncol ; 2022: 3445350, 2022.
Article in English | MEDLINE | ID: mdl-36284632

ABSTRACT

Background. Interleukin-2 (IL-2) is proved to play an irreplaceable role in antitumor regulation in numerous experimental and clinical trials. Tumor-associated macrophages (TAMs) are able to release exosomes to promote the development and progression of hepatocellular carcinoma (HCC) as essential component of microenvironment. In this study, our intention is to explore the effects of the exosomes from TAMs with IL-2 treatment on HCC development. TAMs were collected and cultured from HCC tissues. The exosomes from the TAMs treated with IL-2 (ExoIL2-TAM) or not (ExoTAM) were identified and used to treat HCC cells in vivo and in vitro. The proliferation, apoptosis, and metastasis of HCC cells were measured. The changes of miRNAs in exosomes were explored to clarify the possible mechanisms. Both decrease of cell proliferation and metastasis and increase of apoptosis were observed with ExoIL2-TAM treatment compared with ExoTAM in vivo and in vitro. miR-375 was obviously augmented in ExoIL2-TAM and HCC cells treated with ExoIL2-TAM. Taken together, IL-2 may modulate exosomal miRNAs from TAMs to ameliorate hepatocellular carcinoma development. This study provides a new perspective to explain the mechanism by which IL-2 inhibits hepatocellular carcinoma and implies the potential clinical value of exosomal miRNAs released by TAMs.

8.
Front Surg ; 9: 960768, 2022.
Article in English | MEDLINE | ID: mdl-35965862

ABSTRACT

Objective: To compare the safety and efficacy of enucleation and hepatectomy for the treatment of hepatic hemangioma (HH). Methods: A systematic literature search was conducted to identify studies evaluating enucleation versus hepatectomy for HH starting from the time of database creation to February 2022. Extraction of the data used in this study was done from the literature. The differences between the two surgical approaches were evaluated by comparing and analyzing the relevant data by means of meta-analysis. Results: A total of 1,384 patients (726 underwent enucleation, and 658 with hepatectomy) were included in our meta-analysis from 12 studies. Enucleations were associated with favorable outcomes in terms of operation time [mean difference (MD): -39.76, 95% confidence interval (CI): -46.23, -33.30], blood loss (MD: -300.42, 95% CI: -385.64, -215.19), length of hospital stay (MD: -2.33, 95% CI: -3.22, -1.44), and postoperative complications (OR: 0.57, 95% CI: 0.44-0.74). There were no differences between the groups in terms of patients needing transfusion (OR: 0.85, 95% CI: 0.50, 1.42), inflow occlusion time (MD: 1.72, 95% CI: -0.27, 3.71), and 30-day postoperative mortality (OR: 0.23, 95% CI: 0.02-2.17). Conclusion: Compared with hepatectomy, enucleation is found to be effective at reducing postoperative complications, blood loss, and operation time and shortening the length of hospital stay. Enucleation is similar to hepatectomy in terms of inflow occlusion time, 30-day postoperative mortality, and patients needing transfusing to hepatectomy.

9.
Food Chem ; 368: 130814, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34428689

ABSTRACT

Furfural compounds are produced during infant formula production when heat treatment is involved. In this study, a robust method was established for determining potential and free furfural compounds (furfural, 5-methyl-2-furfural, 2-acetylfuran and 5-hydroxymethyl-2-furfural) using a modified QuEChERS technique coupled with GC-MS/MS. Further, 36 samples of two batches, covering the whole infant formula production chain were analyzed by the method to investigate how furfurals evolved during process. Then risk assessment was conducted using the Toxtree and T.E.S.T. software and evaluated by hazard quotient. Results showed the contents of bound and free 5-hydroxymethyl-2-furfural demonstrated largest increase during spray-drying (6-11 times) and homogenization stages (12-33 times), respectively. As the sum up of bound and free 5-hydroxymethyl-2-furfural, potential 5-hydroxymethyl-2-furfural was found can cause safety risks in the production chain due to the high hazard quotient value (3.11), indicating it should be controlled in homogenization and spray-drying stages.


Subject(s)
Furaldehyde , Infant Formula , Furaldehyde/analysis , Humans , Risk Assessment , Tandem Mass Spectrometry
10.
Cell Cycle ; 20(23): 2494-2506, 2021 12.
Article in English | MEDLINE | ID: mdl-34658297

ABSTRACT

Cyclin-dependent kinases (CDKs) are hyperactive in many cancers and have served as cancer therapeutic targets for decades. Palbociclib (Palb) is the first approved CDK4/6 inhibitor to treat hormone receptor (HR)-positive, HER2-negative advanced breast cancer. Acquired drug resistance is one obstacle of Palb be utilized in other cancer. CDK2 compensation of CDK4/6 loss is one of the causes that cancer cells are resistant to Palb. Hence, targeting multiple CDKs could be a novel strategy to prevent the drug resistance of cancer cells and expand the application of Palb in other cancer. In this study, we initially indicated Polyphyllin I (PPI) significantly inhibits non-small lung cancer cell (NSCLC) proliferation, promotes cell apoptosis in vitro and in vivo. Mechanistically, PPI can inhibit Rb through the p21/CDK2/Rb signaling pathway in NSCLC. A combination of PPI and Palb exerts a significant synergistic anti-cancer ability on NSCLC. Of note, PPI can reverse Palb drug resistance. Herein, we first time demonstrated PPI can disturb CDK2 function through upregulation of p21. The PPI effect on CDK2 provides a choice for a chemotherapeutic strategy for the elimination of NSCLC. Our study highlighted the clinical significance of simultaneously blocking of CDK2 and CDK4/6 for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cyclin-Dependent Kinase 2 , Diosgenin , Lung Neoplasms , Piperazines , Pyridines , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Diosgenin/analogs & derivatives , Humans , Lung Neoplasms/drug therapy , Piperazines/pharmacology , Pyridines/pharmacology , Retinoblastoma Protein/metabolism , Signal Transduction/drug effects
11.
Talanta ; 233: 122576, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215068

ABSTRACT

Micro-tip-based solid-phase microextraction is considered as one of the green and powerful analytical sample preparation techniques, but its efficiency is severely hampered by some basic issues such as tedious fabrication, instability of sorbent bed, and blocking of the tip, especially for biological samples due to low permeability. These issues are tackled by introducing a flexible and hierarchical substrate in the microtip, having good mechanical strength and specific functionality to capture the desired biomolecules. Considering the well-ordered and flexible structure of melamine foam, it was used as a substrate and for hydrophilic interaction chromatography (HILIC). Metal-organic framework, due to its excellent characteristics, was grafted on its surface anchored by self-assembling polydopamine. The resulting material was characterized and packed in the tip by just pressing the material in the conical structure of the tip. This affinity tip established good and tunable permeability and was used to selectively enrich glycopeptides as well as phosphopeptides. The affinity tip demonstrated excellent performance to enrich glycopeptides and phosphopeptides with a low limit of detection up to 0.5 fmol µL-1 from tryptic digests of horseradish peroxidase and ß-Casein, respectively, and was stable up to 5 rounds of enrichment. Moreover, this affinity-tip also exhibited high selectivity up to up to 1:1000 (HRP digest to BSA digest) for glycopeptides and 1:200 (ß-Casein digest to BSA digest) for phosphopeptides and demonstrated several other fascinating characteristics such as; excellent size exclusion effect for the omission of large-sized proteins, modest backpressure, reproducibility, reusability, smooth enrichment, and successfully applied to a human saliva sample.


Subject(s)
Metal-Organic Frameworks , Phosphopeptides , Glycopeptides , Humans , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results
12.
Chemosphere ; 275: 129815, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33639547

ABSTRACT

Volatile organic compounds (VOCs) from solvent-based architectural coatings (SBACs) play an important role in photochemical air pollution with increasing consumption of architectural coatings in China. In this study, we collected 148 typical SBACs of 3 types in China. The TVOC emission factors and source profiles were established, the contributions of SBACs to ozone and secondary organic aerosol (SOA) formation were investigated. The VOC emissions and O3 and SOA amounts formed in chemical reactions from SBACs in 2017 were estimated. Key organic groups and VOC species with high reactivity were identified. According to the results, the TVOC emission factors were 507.17 g L-1 for solvent-based anticorrosive coatings, 381.34 g L-1 for solvent-based floor coatings and 459.68 g L-1 for solvent-based fire-retardant coatings. The VOC emissions were 186,902.11 t, 88,225.41 t and 71,352.32 t; the O3 amounts formed were 742,001.39 t, 397,896.60 t and 244,738.46 t; the SOA amounts formed were 3934.29 t, 2488.04 t and 1104.61 t, respectively, from 3 types of SBACs in 2017. The O3 production factors were 1781.82 g O3 (kg paint)-1, 1457.50 g O3 (kg paint)-1 and 1176.63 g O3 (kg paint)-1, the SOA production factors were 9.45 g SOA (kg paint)-1, 9.11 g SOA (kg paint)-1 and 5.31 g SOA (kg paint)-1, for 3 types of SBACs. Priority should be given to organic group of aromatics and top 17 VOC species with high reactivity for O3 and SOA eliminating strategies, especially three xylenes (o-xylene, m-xylene and p-xylene), ethylbenzene, trimethyl benzenes (1,3,5-trimethyl benzene, 1,2,3-Trimethyl benzene) and toluene.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Solvents , Volatile Organic Compounds/analysis
13.
Talanta ; 225: 121896, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592691

ABSTRACT

Boronic acid-based affinity materials have gained tremendous attention for the selective separation and recognition of cis-diol containing biomolecules. But often, these boronate affinity materials are stuck to some serious issues like high binding pH and weak affinity, especially in the case of glycoproteins. Here in this study, we used 5-boronoisophthlic acid as a novel affinity ligand for the selective capture and release of glycoproteins. The pKa value of 5-boronoisophthalic acid is investigated to be 7.8 which is just closed to physiological pH and is ideally suitable for the fast binding and elution kinetics of glycoproteins to avoid their degradation and deactivation. The affinity ligand is attached to the surface of polymer support using branched polyethyleneimine (PEI) which enhances the binding strength as it has multiple amine groups available for the attachment of 5-boronoisophthalic for synergistic interactions. The resulting affinity material is characterized and packed in a micropipette-tip using hydrophilic melamine foam as a frit to make the separation process smooth, simple, reliable, and robust. This boronic acid-based affinity tip exhibits binding constants for model glycoproteins in the range of 10-6-10-7 M, binding capacities in the range of 0.662 µM/g, and selectivity up to 1:1000 (HRP to BSA) under optimized extraction conditions. Finally, the boronic-based affinity tip is successfully applied to selectively capture the glycoproteins from the human milk sample, especially lactoferrin which is highly important in dairy manufacture.


Subject(s)
Boronic Acids , Glycoproteins , Humans , Hydrogen-Ion Concentration , Ligands , Polyethyleneimine
14.
J Cancer ; 12(24): 7311-7319, 2021.
Article in English | MEDLINE | ID: mdl-35003351

ABSTRACT

Background: The Hippo pathway's primary kinase component, large tumor suppressor 1 (LATS1), has been hypothesized as a tumor suppressor in a variety of cancers. LATS1's biological effects on colorectal cancer (CRC) are yet to be determined. Methods: The analysis of LATS1 mRNA expression in CRC was conducted using public databases from the Gene Expressing Profiling Interactive Analysis database (GEPIA). Investigation for the expression of LATS1 protein in 102 CRC tumor tissues and 57 normal tissues was performed using immunohistochemistry (IHC) analysis. In vitro genetic manipulation was used to explore the potential role and mechanism of LATS1 in the regulation of proliferation and migration of CRC cells. Results: LATS1 was found to be considerably downregulated in CRC tissues, with much lower levels in individuals with bigger tumors of size (≥5 cm), deeper invasion (T3-4), positive lymph node metastasis (LNM), and advanced tumor-node-metastasis (TNM) stage (III-IV). As exhibited by clinical data analysis, LATS1 loss was significantly associated with TNM and LNM staging in CRC patients. Furthermore, our in vitro investigations revealed that LATS1 depletion increased CRC cell proliferation and migration in HCT116 cells, whereas overexpressing LATS1 had the opposite effect in SW620 cells. LATS1 suppressed the expression of glioma-associated oncogene-1 (Gli1), and LATS1's tumor-suppressive actions in CRC are dependent on Gli1. Moreover, LATS1 could modulate Yes-associated protein 1 (YAP1) expression and mTOR activation in CRC cells. Conclusion: Our findings identify the LATS1 as a unique Gli1 regulator in CRC cell migration and proliferation, and suggest that LATS1 may serve as a potential therapeutic target for CRC.

15.
Oncol Lett ; 19(5): 3531-3541, 2020 May.
Article in English | MEDLINE | ID: mdl-32269627

ABSTRACT

Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expression were observed in human PAC compared with normal tissues, as well as in three human PAC cell lines (MIA PaCa-2, PANC-1 and KP-3 cells) compared with the H6c7 human immortal pancreatic duct epithelial cell line. High expression levels of KRT17 in PAC samples were associated with poor overall survival (P=0.036) and disease-free survival (P=0.017). Lentivirus-mediated KRT17 silencing inhibited cell proliferation, colony formation and migration, but promoted apoptosis and resulted in cell cycle arrest in the G0/G1 phase in PANC-1 cells. In addition, KRT17 knockdown inhibited in vivo tumor growth. KRT17 knockdown induced dysregulation of ERK1/2 and upregulation of the pro-apoptotic Bcl-2 protein Bad. In conclusion, the present study demonstrated that elevated KRT17 levels are positively associated with pancreatic cancer progression; KRT17 knockdown suppressed cell growth, colony formation, migration and tumor growth, and induced apoptosis and cell cycle arrest, affecting ERK1/2/Bad signaling. Therefore, the results of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer.

16.
J Mass Spectrom ; 55(5): e4499, 2020 May.
Article in English | MEDLINE | ID: mdl-31919971

ABSTRACT

The supercritical fluid chromatography coupled with mass spectrometry (SFC-MS) method and liquid chromatography coupled with mass spectrometry (LC-MS) method were developed for the separation and characterization of poly (ethylene oxide) methyl glucose sesquistearate (PEO-Glu-sesquistearate). The products of PEO-Glu-sesquistearate are composed of complex oligomers. The relationship between molecular structure of these oligomers and chromatographic retention behavior in both SFC and LC were discussed and compared. As compared with LC, hydrophobic moieties of compounds favor the fast elution in SFC. The different series can be better separated by LC, while the homologues compounds in same series can be better separated by SFC, and SFC-MS provided more comprehensive structural information. Different series such as PEO-distearate, PEO-stearate, PEO, PEO-Glu-tetrastearate, PEO-Glu-tristearate, PEO-Glu-distearate, PEO-Glu-stearate, and PEO-Glu were identified by MS/MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...