Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1583-1591, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694421

ABSTRACT

To screen out suitable herbicides for peach nurseries, we treated the potted seedlings of the peach rootstock 'Nemaguard' with eleven herbicides under recommended doses to investigate the changes of physiological indices and comprehensively evaluate the safety of different herbicides using principal component analysis (PCA). The results showed that soil application of quizalofop-p exhibited no detectable phytotoxicity on rootstock seedlings, while the remaining herbicides generated multiple symptoms, including green loss, wilting, spot, and withering. Starane caused rapid wilting and death, with a 100.0% phytotoxicity index (PI). Soil application of n-(phosphonomethyl)glycine, glufosinate-ammonium, acetochlor, and MCPA-Na showed a PI>65.0%. As compared with the control, all herbicides inhibited leaf area growth to varying degrees, with a 10.0%-56.2% and 5.8%-44.4% reduction in young leaf area and mature leaf area, respectively. All herbicides, except quizalofop-p, increased the electrolyte permeability of leaf and root tip cells by 21.2%-145.0% and 36.9%-291.4%, respectively, and significantly inhibited root growth. The total root length, root surface area, root volume, and the number of root tips significantly decreased by 37.3%-75.3%, 35.7%-83.0%, 44.3%-89.9%, and 42.6%-73.7%, respectively. Although net photosynthetic rate (Pn) and transpiration rate (Tr) of leaves were not significantly affected by quizalofop-p, mesotrione-atrazine, MCPA-Na·bentazone, bensulfuron-methyl·quinclorac, and bensulfuron-methyl·acetochlor, there was significant reduction of 29.6%, 28.9%, 28.4% and 27.9% in Pn and 21.9%, 29.2%, 26.4%, and 19.7% in Tr post soil application of n-(phosphonomethyl)glycine, glufosinate-ammonium, acetochlor, and MCPA-Na. The overall safety ranking of the 11 examined herbicides is as follows: quizalofop-p>bensulfuron-methyl·acetochlor>bensulfuron-methyl·quinclorac>esotrione·atrazine> auizalofop-p·fluoroglycofen>acetochlor>MCPA-Na·bentazone>MCPA-Na>n-(phosphonomethyl)glycine>glufosinate-ammonium>sterane.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Atrazine , Herbicides , Prunus persica , Herbicides/toxicity , Seedlings
2.
Front Plant Sci ; 13: 975073, 2022.
Article in English | MEDLINE | ID: mdl-36426144

ABSTRACT

Quinoa (Chenopodium quinoa Willd.), an Andean native crop, is increasingly popular around the world due to its high nutritional content and stress tolerance. The production and the popularity of this strategic global food are greatly restricted by many limiting factors, such as seed pre-harvest sprouting, bitter saponin, etc. To solve these problems, the underlying mechanism of seed maturation in quinoa needs to be investigated. In this study, based on the investigation of morphological characteristics, a quantitative analysis of its global proteome was conducted using the combinational proteomics of tandem mass tag (TMT) labeling and parallel reaction monitoring (PRM). The proteome changes related to quinoa seed maturation conversion were monitored to aid its genetic improvement. Typical changes of morphological characteristics were discovered during seed maturation, including mean grain diameter, mean grain thickness, mean hundred-grain weight, palea, episperm color, etc. With TMT proteomics analysis, 581 differentially accumulated proteins (DAPs) were identified. Functional classification analysis and Gene Ontology enrichment analysis showed that most DAPs involved in photosynthesis were downregulated, indicating low levels of photosynthesis. DAPs that participated in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase, were upregulated to fulfill the increasing requirement of energy consumption during maturation conversion. The storage proteins, such as globulins, legumins, vicilins, and oleosin, were also increased significantly during maturation conversion. Protein-protein interaction analysis and function annotation revealed that the upregulation of oleosin, oil body-associated proteins, and acyl-coenzyme A oxidase 2 resulted in the accumulation of oil in quinoa seeds. The downregulation of ß-amyrin 28-oxidase was observed, indicating the decreasing saponin content, during maturation, which makes the quinoa "sweet". By the PRM and qRT-PCR analysis, the expression patterns of most selected DAPs were consistent with the result of TMT proteomics. Our study enhanced the understanding of the maturation conversion in quinoa. This might be the first and most important step toward the genetic improvement of quinoa.

3.
Int J Ophthalmol ; 15(4): 604-608, 2022.
Article in English | MEDLINE | ID: mdl-35450194

ABSTRACT

AIM: To investigate the clinical characteristics of idiopathic uveal effusion syndrome (IUES) and to identify effective surgical modalities for its treatment. METHODS: This retrospective analysis included clinical data of 33 eyes from 26 patients with IUES at Beijing Tongren Hospital. Records of eye examinations, ocular ultrasound, ocular ultrasound biomicroscopy (UBM), and follow-up surgical treatment were reviewed and analyzed. RESULTS: Of 26 patients, 17 (65.4%) were male and 9 (34.6%) were female. The average age of disease onset was 46.8y (range: 22-64y). Seven patients (26.9%) showed retinal detachment in both eyes at presentation. B-ultrasound showed the presence of retinal detachment in one eye or both eyes. All patients had binocular ciliary leakage and detachment. Eyes with retinal detachment underwent four-quadrantic partial-thickness sclerectomy and sclerostomy. Subretinal fluid resolution was achieved within 6mo. Recurrence was observed in three eyes and was resolved with re-operation. CONCLUSION: Ophthalmic ultrasound and UBM, among others, can be helpful in the diagnosis of IUES. Sclerectomy and sclerostomy are surgical modalities that can successfully treat the disease. Some patients may experience recurrence after surgery; reoperation remains safe and effective for them. Long-term follow-up is essential in such settings.

4.
J Hazard Mater ; 425: 127947, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34896722

ABSTRACT

Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.


Subject(s)
Ammonium Compounds , Soil Pollutants , Solanum nigrum , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Nitrates , Plant Roots/chemistry , Soil Pollutants/analysis
5.
Front Plant Sci ; 12: 720593, 2021.
Article in English | MEDLINE | ID: mdl-34589100

ABSTRACT

Drought and salinity are the two major abiotic stresses constraining the crop yield worldwide. Both of them trigger cellular dehydration and cause osmotic stress which leads to cytosolic and vacuolar volume reduction. However, whether plants share a similar tolerance mechanism in response to these two stresses under natural conditions has seldom been comparatively reported. There are three different ecotypes of reed within a 5 km2 region in the Badanjilin desert of Northwest China. Taking the typical swamp reed (SR) as a control, we performed a comparative study on the adaption mechanisms of the two terrestrial ecotypes: dune reed (DR) and heavy salt meadow reed (HSMR) by physiological and proteomic approaches coupled with bioinformatic analysis. The results showed that HSMR and DR have evolved C4-like photosynthetic and anatomical characteristics, such as the increased bundle sheath cells (BSCs) and chloroplasts in BSCs, higher density of veins, and lower density and aperture of stomata. In addition, the thylakoid membrane fluidity also plays an important role in their higher drought and salinity tolerance capability. The proteomic results further demonstrated that HSMR and DR facilitated the regulation of proteins associated with photosynthesis and energy metabolism, lipid metabolism, transcription and translation, and stress responses to well-adapt to the drought and salinity conditions. Overall, our results demonstrated that HSMR and DR shaped a similar adaption strategy from the structural and physiological levels to the molecular scale to ensure functionality in a harsh environment.

6.
J Proteomics ; 248: 104349, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34411764

ABSTRACT

Low temperature in winter was the most crucial abiotic stress that limits the mangrove afforestation northward. Previous study demonstrated that Sonneratia apetala initially transplanted to high latitude area exhibited a stronger plasticity of cold tolerance. To clarify the underlying mechanism, the physiological and proteomic responses to chilling stress were investigated in S. apetala leaves. Our results found that cold-acclimated seedlings had lower relative electrolyte leakage and MDA content than non-acclimated seedlings. On the contrary, higher chlorophyll content and photosynthetic capacity were observed in cold-acclimated seedlings. With proteomic analyses, the differentially accumulated proteins (DAPs) involved in ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding were suggested to play important roles in enhancing the cold tolerance of S. apetala. However, the down-regulation DAPs were suggested as a tradeoff between plant growth and chilling response. By the protein-protein interaction analyses, translation elongation factor G, chlorophyll A-B binding protein and ascorbate peroxidase 1 were suggested as the important regulators in cold-acclimated S. apetala seedlings under chilling stress. Based on the above results, a schematic diagram describing the mechanism of cold tolerance of exotic mangrove species S. apetala that was achieved by cold acclimation was presented in this study. SIGNIFICANCE: The major environmental factor limits the mangrove afforestation northward is the low temperature in winter. Previous study reported that Sonneratia apetala grew in high latitude exhibited a higher cold tolerance than that in low latitude, which was suggested as a result of cold acclimation. To further understand "how cold acclimation enhance the cold tolerance in S. apetala", the response of S. apetala subjected to chilling stress with or without cold acclimation was investigated in this study at the physiological and proteomic aspects. Our physiological results showed that S. apetala seedlings treated with cold acclimation exhibited a higher tolerance under chilling stress than that without cold acclimation. By using the comparative proteomic approaches and bioinformatic analyses, various biological processes were suggested to play an important role in enhancing the cold tolerance of S. apetala under chilling stress, such as ROS scavenging, photosynthesis and energy metabolism, carbohydrate metabolism, cofactor biosynthesis, and protein folding. Among these differentially accumulated proteins, translation elongation factor G (eEF-G), chlorophyll A-B binding protein (CAB) and ascorbate peroxidase 1 (APX1) were identified as the hub proteins function in coordinated regulating ROS scavenging, photosynthesis and protein biosynthesis in chloroplast and subsequently enhanced the cold tolerance of S. apetala under chilling stress. Our results provided a further understanding of cold acclimation in improving the cold tolerance in exotic mangrove species S. apetala.


Subject(s)
Proteome , Seedlings , Acclimatization , Chlorophyll A , Cold Temperature , Proteomics
7.
Nitric Oxide ; 111-112: 14-30, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33839259

ABSTRACT

Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.


Subject(s)
Hydrogen Sulfide/pharmacology , Oryza/drug effects , Protective Agents/pharmacology , Salt Stress/drug effects , Seedlings/drug effects , Enzymes/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Protein Interaction Maps , Proteome/metabolism , Proteomics , Reactive Oxygen Species/metabolism , Seedlings/growth & development , Seedlings/metabolism , Sulfides/pharmacology
8.
Phytochemistry ; 184: 112655, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33540237

ABSTRACT

Petal blight caused by fungi is among the most destructive diseases of Rhododendron, especially Rhododendron agastum. Nonetheless, the metabolite changes that occur during petal blight are unknown. We used untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) to compare the metabolite profiles of healthy and petal blight R. agastum flowers. Using GC-TOF-MS, 571 peaks were extracted, of which 189 metabolites were tentatively identified. On the other hand, 364 and 277 metabolites were tentatively identified in the positive and negative ionization modes of the UHPLC-QTOF-MS/MS, respectively. Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were able to clearly discriminate between healthy and petal blight flowers. Differentially abundant metabolites were primarily enriched in the biosynthesis of specialized metabolites. 17 accumulated specialized metabolites in petal blight flowers have been reported to have antifungal activity, and literature indicates that 9 of them are unique to plants. 3 metabolites (chlorogenic acid, medicarpin, and apigenin) are reportedly involved in resistance to blight caused by pathogens. We therefore speculate that the accumulation of chlorogenic acid, medicarpin, and apigenin may be involved in the resistance to petal blight. Our results suggest that these metabolites may be used as candidate biocontrol agents for the control fungal petal blight in Rhododendron.


Subject(s)
Rhododendron , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Metabolomics
9.
Int J Mol Sci ; 21(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878013

ABSTRACT

As a dominant mangrove species, Kandelia obovata is distributed in an intertidal marsh with an active H2S release. Whether H2S participates in the salt tolerance of mangrove plants is still ambiguous, although increasing evidence has demonstrated that H2S functions in plant responses to multiple abiotic stresses. In this study, NaHS was used as an H2S donor to investigate the regulatory mechanism of H2S on the salt tolerance of K. obovata seedlings by using a combined physiological and proteomic analysis. The results showed that the reduction in photosynthesis (Pn) caused by 400 mM of NaCl was recovered by the addition of NaHS (200 µM). Furthermore, the application of H2S enhanced the quantum efficiency of photosystem II (PSII) and the membrane lipid stability, implying that H2S is beneficial to the survival of K. obovata seedlings under high salinity. We further identified 37 differentially expressed proteins by proteomic approaches under salinity and NaHS treatments. Among them, the proteins that are related to photosynthesis, primary metabolism, stress response and hormone biosynthesis were primarily enriched. The physiological and proteomic results highlighted that exogenous H2S up-regulated photosynthesis and energy metabolism to help K. obovata to cope with high salinity. Specifically, H2S increased photosynthetic electron transfer, chlorophyll biosynthesis and carbon fixation in K. obovata leaves under salt stress. Furthermore, the abundances of other proteins related to the metabolic pathway, such as antioxidation (ascorbic acid peroxidase (APX), copper/zinc superoxide dismutase (CSD2), and pancreatic and duodenal homeobox 1 (PDX1)), protein synthesis (heat-shock protein (HSP), chaperonin family protein (Cpn) 20), nitrogen metabolism (glutamine synthetase 1 and 2 (GS2), GS1:1), glycolysis (phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI)), and the ascorbate-glutathione (AsA-GSH) cycle were increased by H2S under high salinity. These findings provide new insights into the roles of H2S in the adaptations of the K. obovata mangrove plant to high salinity environments.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Hydrogen Sulfide/pharmacology , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Rhizophoraceae/metabolism , Salt Tolerance/drug effects , Seedlings/metabolism , Photosynthesis/drug effects , Salinity
10.
Sci Total Environ ; 653: 231-240, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30412868

ABSTRACT

Chinese mangrove, an important ecosystem in coastal wetlands, is sensitive to the invasive alien species Spartina alterniflora. However, the effects of the S. alterniflora invasion on mangrove soil N2O emissions and the underlying mechanisms by which emissions are affected have not been well studied. In this study, the N2O emitted from soils dominated by two typical native mangroves (i.e. Kandelia obovata: KO; Avicennia marina: AM), one invaded by S. alterniflora (SA), and one bare mudflat (Mud) were monitored at Zhangjiang Mangrove Estuary (where S. alterniflora is exotic). Together with soil biogeochemical properties, the potential denitrification rate and the composition of soil bacterial communities were determined simultaneously by 15NO3- tracer and high-throughput sequencing techniques, respectively. Our results showed that S. alterniflora invasion significantly (p < 0.05) increases soil N2O emissions by 15-28-fold. In addition, isotope results revealed that the soil potential denitrification rate was significantly (p < 0.05) enhanced after S. alterniflora invasion. Moreover, the S. alterniflora invasion significantly (p < 0.05) decreased soil bacterial α-diversity and strongly modified soil bacterial communities. Indicator groups strongly associated with S. alterniflora were Chloroflexia, Alphaproteobacteria, and Bacilli, each of which was abundant and acts as connector in the co-occurrence network. FAPROTAX analysis implied that the S. alterniflora invasion stimulated soil denitrification and nitrification while depressing anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA). Redundancy analysis (RDA) found that soil organic matter (SOM) and pH were the most important environmental factors in altering soil bacterial communities. Taken together, our results imply that the S. alterniflora invasion in mangrove wetlands significantly stimulates soil denitrification and N2O emissions, thereby contributing N2O to the atmosphere and contributing to global climate change.


Subject(s)
Bacteria/metabolism , Denitrification , Microbiota/physiology , Nitrous Oxide/metabolism , Poaceae/physiology , Wetlands , China , Introduced Species , Plant Dispersal , Soil/chemistry , Soil Microbiology
11.
Sci Rep ; 8(1): 9243, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915226

ABSTRACT

Mangroves are critical in global carbon budget while vulnerable to exotic plant invasion. Spartina alterniflora, one of typical salt marsh plant grows forcefully along the coast of China, has invaded the native mangrove habitats in Zhangjiang Estuary. However, the effects of S. alterniflora invasion on soil carbon gases (CH4 and CO2) emission from mangroves are not fully understood. Accordingly, we conducted a field experiment to investigate the soil CH4 and CO2 emission during growing seasons in 2016 and 2017 at four adjacent wetlands, namely bare mudflat (Mud), Kandelia obovata (KO), Avicennia marina (AM) and S. alterniflora (SA). Potential methane production (PMP), potential methane oxidation (PMO), functional microbial abundance and soil biogeochemical properties were measured simultaneously. Our results indicate that S. alterniflora invasion could dramatically increase soil CH4 emissions mainly due to the enhancement in PMP which facilitated by soil EC, MBC, TOC and mcrA gene abundance. Additionally, S. alterniflora invasion decreases soil CO2 emission. Both heterotrophic microbial respiration (16S rRNA) and methane oxidation (pmoA and ANME-pmoA) are responsible for CO2 emission reduction. Furthermore, S. alterniflora invasion greatly increases GWP by stimulating CH4 emissions. Thus, comparing with mangroves, invasive S. alterniflora significantly (p < 0.001) increases CH4 emission while reduces CO2 emission.

12.
Tree Physiol ; 38(11): 1605-1622, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29917117

ABSTRACT

Avicennia marina (Forsk.) Vierh is one of the most salt-tolerant mangrove species. Our previous study revealed that nitric oxide (NO) enhanced the salt tolerance of A. marina by promoting salt secretion and Na+ sequestration under salt stress. However, little is known about the regulation of NO on proteomic profiling for this mangrove species. In this study, we used sodium nitroprusside (SNP), an NO donor, to investigate the regulatory mechanism of NO on salt tolerance of A. marina according to physiological and proteomic aspects. Photosynthesis data showed that the reduction in photosynthesis caused by high salinity treatment (400 mM NaCl) could be partially recovered by addition of SNP (100 µM). Further analysis revealed that the high salinity treatment could induce not only the stomatal limitation but also non-stomatal limitation on photosynthetic reduction, while SNP addition could restore the non-stomatal limitation, implying that the application of SNP was beneficial to the metabolic process in leaves. Proteomic analysis identified 49 differentially expressed proteins involved in various biological processes such as photosynthesis, energy metabolism, primary metabolism, RNA transcription, protein translation and stress response proteins. Under high salinity treatment, the abundances of proteins related to photosynthesis, such as ribulose-phosphate 3-epimerase (RPE, spot 3), RuBisCO large subunit (RBCL, spot 4, 5, 24), RuBisCO activase A (RCA, spot 17, 18) and quinine oxidoreductase-like protein isoform 1 (QOR1, spot 23), were significantly decreased. However, the abundance of proteins such as RBCL (spot 5, 9) and QOR1 (spot 23) were increased by SNP addition. In addition, exogenous NO supply alleviated salt tolerance by increasing the accumulation of some proteins involved in energy metabolism (spot 15), primary metabolism (spot 25, 45, 46), RNA transcription (spot 36) and stress response proteins (spot 12, 21, 26, 37, 43). The transcriptional levels of nine selected proteins were mostly consistent with their protein abundance except spot 46. Overall, the presented data demonstrated that NO has a positive effect on improving salt tolerance in A. marina by regulating the protein abundance involved in photosynthesis, energy metabolism, primary metabolism and stress response.


Subject(s)
Avicennia/physiology , Gene Expression Regulation, Plant , Nitric Oxide/metabolism , Photosynthesis , Plant Proteins/genetics , Proteome , Salt Tolerance , Avicennia/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Up-Regulation
13.
Int J Ophthalmol ; 10(4): 613-618, 2017.
Article in English | MEDLINE | ID: mdl-28503436

ABSTRACT

AIM: To assess the correlation between choroidal thickness (CT) and the early stages of diabetic retinopathy (DR) in type 2 diabetic patients. METHODS: We divided 83 diabetic patients (51-80 years of age; 50 females) into non diabetic retinopathy group (NDR) and mild/moderate nonproliferative diabetic retinopathy (NPDR) group, and compared them with 26 non-diabetic control subjects (51-78 years of age; 16 females). Subfoveal choroidal thickness (SFCT) and parafoveal choroidal thickness (PFCT) were measured using enhanced depth imaging spectral-domain optical coherence tomography (EDI-OCT). Ocular health status, disease duration, body mass index, and hemoglobin A1c (HbA1c) were recorded. RESULTS: The mean ages of the NDR, NPDR, and control groups were 68.0±6.9y, 67.8±6.4y, and 65.1±6.3y, respectively (P=0.17). Pearson correlation of the right and left eyes for the control subjects was 0.95 and for the NDR subjects was 0.93. SFCT for the right eyes of the controls was 252.77± 41.10 µm, which was significantly thicker than that of the right eyes in NDR group (221.51±46.56 µm) and the worse eyes of the NPDR group (207.18±61.87 µm; ANOVA, P<0.01). In the diabetic patients pooled together, age was the only variable significantly associated with SFCT (multiple linear regression analysis, P=0.01). CONCLUSION: CT decreased significantly in the NDR and mild/moderate NPDR eyes compared with the control eyes. Age is significantly associated with SFCT in the diabetic patients. Diabetic choroidopathy may be present before clinical retinopathy.

14.
Tree Physiol ; 37(1): 82-97, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28173596

ABSTRACT

Avicennia marina (Forsk.) Vierh is a widespread mangrove species along the southeast coasts of China. Recently, the outbreak of herbivorous insect, Phyllocnistis citrella Stainton, a leaf miner, have impacted on the growth of A. marina. Little is reported about the responses of A. marina to leaf miner infection at the biochemical, physiological and molecular levels. Here, we reported the responses of A. marina to leaf miner infection from the aspects of leaf structure, photosynthesis, and antioxidant system and miner responsive genes expression. A. marina leaves attacked by the leaf miner exhibited significant decreases in chlorophyll, carbon and nitrogen contents, as well as a decreased photosynthetic rate. Scanning and transmission electron microscopic observations revealed that the leaf miner only invaded the upper epidermis and destroyed the epidermal cell, which lead to the exposure of salt glands. In addition, the chloroplasts of mined leaves (ML) were swollen and the thylakoids degraded. The maximal net photosynthetic rate, stomatal conductance (Gs), carboxylation efficiency (CE), dark respiration (Rd), light respiration (Rp) and quantum yields (AQE) significantly decreased in the ML, whereas the light saturation point (Lsp), light compensation point (Lcp), water loss and CO2 compensation point (Г) increased in the ML. Moreover, chlorophyll fluorescence features also had been changed by leaf miner attacks. Interestingly, higher generation rate of O2ˉ· and lower antioxidant enzyme expression in the mined portion (MP) were found; on the contrary, higher H2O2 level and higher antioxidant enzyme expression in the non-mined portion (NMP) were revealed, implying that the NMP may be able to sense that the leaf miner attacks had happened in the MP of the A. marina leaf via H2O2 signaling. Besides, the protein expression of glutathione S-transferase (GST) and the glutathione (GSH) content were increased in the ML. In addition, insect resistance-related gene expression such as chitinase 3, RAR1, topless and PIF3 had significantly increased in the ML. Taken together, our data suggest that leaf miners could significantly affect leaf structure, photosynthesis, the antioxidant system and miner responsive gene expression in A. marina leaves.


Subject(s)
Antibiosis , Avicennia/anatomy & histology , Avicennia/physiology , Food Chain , Herbivory , Moths/physiology , Animals , Antioxidants/metabolism , Avicennia/genetics , Gene Expression , Larva/physiology , Moths/growth & development , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Proteins/metabolism
15.
Sci Total Environ ; 575: 390-399, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27750135

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) have become ubiquitous environmental contaminants, particularly in mangrove wetlands. However, little is known about the long-term effect of mangrove plants on PBDE removal from contaminated sediments. A 12-month microcosm experiment was conducted to understand the effect of two mangrove species, namely Avicennia marina (Am) and Aegiceras corniculatum (Ac), on PBDE removal from the sediments spiked with 2000ngg-1 dry weight of BDE-47, and to explore the microbial mechanism responsible for the planting-induced effects on BDE-47 removal. Results showed that planting of mangrove species, either Am or Ac, could accelerate BDE-47 removal from contaminated sediments during the 12months experiment, mainly through enhancing microbial degradation process. In particular, Am sediment had significantly higher BDE-47 degradation efficiency compared with Ac sediment, which may be mainly attributed to higher activities of urease and dehydrogenase, as well as higher 16S rRNA gene copies of total bacteria and organohalide-respiring bacteria (OHRB) in Am sediment. Moreover, planting could shift sediment bacterial community composition and selectively enrich some bacterial genera responsible for PBDE degradation. Such selective enrichment effect of Am on the potential PBDE-degrading bacteria differed distinctly from that of Ac. These results indicated that long-term planting of mangrove species, especially Am, could significantly promote BDE-47 removal from the contaminated sediments by enhancing microbial activity, increasing total bacterial and OHRB abundances and altering bacterial community composition.

16.
J Proteome Res ; 15(1): 216-28, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26616104

ABSTRACT

Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.


Subject(s)
Calcium/toxicity , Liquidambar/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Acid Rain , Gene Expression , Liquidambar/drug effects , Metabolic Networks and Pathways , Plant Leaves/drug effects , Plant Proteins/genetics , Proteome/genetics , Proteomics , Stress, Physiological
17.
J Hazard Mater ; 297: 173-82, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-25958266

ABSTRACT

Nitric oxide (NO) has been found to function in enhancing plant tolerance to various environmental stresses. However, role of NO in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. Here, sodium nitroprusside (SNP, a NO donor) was used to investigate the possible roles and the regulatory mechanisms of NO in counteracting ZnO NPs toxicity in rice seedlings. Our results showed that 10 µM SNP significantly inhibited the appearance of ZnO NP toxicity symptoms. SNP addition significantly reduced Zn accumulation, reactive oxygen species production and lipid peroxidation caused by ZnO NPs. The protective role of SNP in reducing ZnO NPs-induced oxidative damage is closely related to NO-mediated antioxidant system. A decrease in superoxide dismutase activity, as well as an increase in reduced glutathione content and peroxidase, catalase and ascorbate peroxidase activity was observed under SNP and ZnO NPs combined treatments, compared to ZnO NPs treatment alone. The relative transcript abundance of corresponding antioxidant genes exhibited a similar change. The role of NO in enhancing ZnO NPs tolerance was further confirmed by genetic analysis using a NO excess mutant (noe1) and an OsNOA1-silenced plant (noa1) of rice. Together, this study provides the first evidence indicating that NO functions in ameliorating ZnO NPs-induced phytotoxicity.


Subject(s)
Metal Nanoparticles/chemistry , Nitric Oxide/chemistry , Oryza/drug effects , Zinc Oxide/chemistry , Antioxidants/chemistry , Ascorbate Peroxidases/chemistry , Biomass , Catalase/chemistry , Chlorophyll/chemistry , Dose-Response Relationship, Drug , Gene Expression Regulation, Plant , Glutathione/chemistry , Hydrogen Peroxide/chemistry , Lipid Peroxidation , Microscopy, Electron, Transmission , Mutation , Oryza/genetics , Oxidative Stress , Peroxidase/chemistry , Plant Roots/drug effects , Plant Shoots/drug effects , Reactive Oxygen Species/chemistry , Seedlings/drug effects , Zinc/chemistry
18.
J Zhejiang Univ Sci B ; 15(9): 809-19, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25183035

ABSTRACT

The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches.


Subject(s)
Anthocyanins/biosynthesis , Genes, Plant , Prunus/genetics , Prunus/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus/growth & development , Species Specificity , Transcription Factors/genetics , Transcription Factors/metabolism
19.
PLoS One ; 9(7): e102532, 2014.
Article in English | MEDLINE | ID: mdl-25025692

ABSTRACT

Acid rain (AR) is a serious environmental issue inducing harmful impacts on plant growth and development. It has been reported that Liquidambar formosana, considered as an AR-sensitive tree species, was largely injured by AR, compared with Schima superba, an AR-tolerant tree species. To clarify the different responses of these two species to AR, a comparative proteomic analysis was conducted in this study. More than 1000 protein spots were reproducibly detected on two-dimensional electrophoresis gels. Among them, 74 protein spots from L. formosana gels and 34 protein spots from S. superba gels showed significant changes in their abundances under AR stress. In both L. formosana and S. superba, the majority proteins with more than 2 fold changes were involved in photosynthesis and energy production, followed by material metabolism, stress and defense, transcription, post-translational and modification, and signal transduction. In contrast with L. formosana, no hormone response-related protein was found in S. superba. Moreover, the changes of proteins involved in photosynthesis, starch synthesis, and translation were distinctly different between L. formosana and S. superba. Protein expression analysis of three proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, ascorbate peroxidase and glutathione-S-transferase) by Western blot was well correlated with the results of proteomics. In conclusion, our study provides new insights into AR stress responses in woody plants and clarifies the differences in strategies to cope with AR between L. formosana and S. superba.


Subject(s)
Liquidambar/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Theaceae/metabolism , Acid Rain , Adaptation, Physiological , Photosynthesis , Proteomics , Stress, Physiological
20.
Int J Mol Sci ; 15(3): 4333-55, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24625662

ABSTRACT

Acid rain (AR), a serious environmental issue, severely affects plant growth and development. As the gymnosperms of conifer woody plants, Pinus massoniana (AR-sensitive) and Taxus wallichiana var. mairei (AR-resistant) are widely distributed in southern China. Under AR stress, significant necrosis and collapsed lesions were found in P. massoniana needles with remarkable yellowing and wilting tips, whereas T. wallichiana var. mairei did not exhibit chlorosis and visible damage. Due to the activation of a large number of stress-related genes and the synthesis of various functional proteins to counteract AR stress, it is important to study the differences in AR-tolerance mechanisms by comparative proteomic analysis of tolerant and sensitive species. This study revealed a total of 65 and 26 differentially expressed proteins that were identified in P. massoniana and T. wallichiana var. mairei, respectively. Among them, proteins involved in metabolism, photosynthesis, signal transduction and transcription were drastically down-regulated in P. massoniana, whereas most of the proteins participating in metabolism, cell structure, photosynthesis and transcription were increased in T. wallichiana var. mairei. These results suggest the distinct patterns of protein expression in the two woody species in response to AR, allowing a deeper understanding of diversity on AR tolerance in forest tree species.


Subject(s)
Acid Rain , Pinus/metabolism , Plant Proteins/metabolism , Proteomics/methods , Taxus/metabolism , Adaptation, Physiological , Amino Acid Sequence , Ecosystem , Electrophoresis, Gel, Two-Dimensional , Models, Biological , Molecular Sequence Data , Phenotype , Pinus/anatomy & histology , Pinus/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/classification , Plant Proteins/genetics , Species Specificity , Stress, Physiological , Taxus/anatomy & histology , Taxus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...