Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6688): 1236-1240, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484063

ABSTRACT

Power conversion efficiencies (PCEs) of inverted perovskite solar cells (PSCs) have been improved by the use of a self-assembled monolayer (SAM) hole transport layer. Long-term stability of PSCs requires keeping the SAM compact under the perovskite layer during operation. We found that strong polar solvents in the perovskite precursor desorb the SAM if it is anchored on substrates by hydrogen-bonded, rather than covalently bonded, hydroxyl groups. We used atomic-layer deposition to create an indium tin oxide substrate with a fully covalent hydroxyl-covered surface for SAM anchoring, as well as a SAM with a trimethoxysilane group that exhibited strong tridentate anchoring to the substrate. The resulting PSCs achieved PCEs of 24.8 (certified 24.6) and 23.2% with aperture areas of 0.08 and 1.01 square centimeters, respectively. The devices retained 98.9 and 98.2% of the initial PCE after 1000 hours damp-heat test and operation in maximum power point tracking at 85°C for 1200 hours under standard illumination, respectively.

2.
Foods ; 12(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959089

ABSTRACT

The acid tolerance of lactic acid bacteria is crucial for their fermentation and probiotic functions. Acid adaption significantly enhances the acid tolerance of strains, and the phenotypic heterogeneity driven by the acid tolerance response (ATR) contributes to this process by providing a selective advantage in harsh environments. The mechanism of heterogeneity under the ATR is not yet clear, but individual gene expression differences are recognized as the cause. In this study, we observed four heterogeneous subpopulations (viable, injured, dead, and unstained) of Lacticaseibacillus paracasei L9 (L9) induced by acid adaption (pH 5.0, 40 min) using flow cytometry. The viable subpopulation represented a significantly superior acid tolerance to the injured subpopulation or total population. Different subpopulations were sorted and transcriptomic analysis was performed. Five genes were found to be upregulated in the viable subpopulation and downregulated in the injured subpopulation, and bglG (LPL9_RS14735) was identified as having a key role in this process. Using salicin (glucoside)-inducing gene expression and gene insertion mutagenesis, we verified that bglG regulated the heterogeneity of the acid stress response and that the relevant mechanisms might be related to activating hsp20. This study provides new evidence for the mechanism of the ATR and may contribute to the theoretical basis of improving the acid tolerance of Lacticaseibacillus paracasei L9.

3.
Nat Commun ; 14(1): 6362, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821477

ABSTRACT

The fine-scale seismic features near the inner core boundary (ICB) provide critical insights into the thermal, chemical, and geodynamical interactions between liquid and solid cores, and may shed light on the evolution mechanism of the Earth's core. Here, we utilize a dataset of pre-critical PKiKP waveforms to constrain the fine structure at the ICB, considering the influence of various factors such as source complexity, structural anomalies in the mantle, and properties at the ICB. Our modeling suggests a sharp ICB beneath Mongolia and most of Northeast Asia, but a locally laminated ICB structure beneath Central Asia, Siberia, and part of Northeast Asia. The complex ICB structure might be explained by either the existence of a kilometer-scale thickness of mushy zone, or the localized coexistence of bcc and hcp iron phase at the ICB. We infer that there may be considerable lateral variations in the dendrites growing process at ICB, probably due to the complicated thermochemical and geodynamical interaction between the outer and inner core.

4.
J Hazard Mater ; 458: 132040, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37451102

ABSTRACT

The acceleration of Fe(III)/Fe(II) conversion in Fenton systems is the critical route to achieve the long-lasting generation of reactive oxygen species towards the oxidation of refractory contaminants. Here, we found that waste leather derived porous carbon materials (LPC), as a simple and readily available metal-free biochar material, can promote the Fe(III)/H2O2 system to generate hydroxyl radicals (•OH) for oxidizing a broad spectrum of contaminants. Results of characterizations, theoretical calculations, and electrochemical tests show that the surface carbonyl groups of LPC can provide electron for direct Fe(III) reduction. More importantly, the graphitic-N on surface of LPC can enhance the reactivity of Fe(III) for accelerating H2O2 induced Fe(III) reduction. The presence of LPC accelerates the Fe(III)/Fe(II) redox cycle in the Fe(III)/H2O2 system, sustainable Fenton chain reactions is thus initiated for long-lasting generation of hydroxyl radicals without adding Fe(II). The continuous flow mode that couples in-situ Fenton-like oxidation and LPC with excellent adsorption catalytic properties, anti-coexisting substances interference and reusability performance enables efficient, green and sustainable degradation of trace organic pollutants. Therefore, the application of metal-free carbon materials in Fenton-like system can solve its rate-limiting problem, reduce the production of iron sludge, achieve green Fenton chemistry, and facilitate the actual engineering application of economic and ecological methods to efficiently remove trace organic contaminants from actual water sources.

5.
Science ; 377(6611): 1227-1232, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36074838

ABSTRACT

Highly efficient halide perovskite solar cells generally rely on lithium-doped organic hole transporting layers that are thermally and chemically unstable, in part because of migration of iodide anions from the perovskite layer. We report a solution strategy to stabilize the hole transport in organic layers by ionic coupling positive polymer radicals and molecular anions through an ion-exchange process. The target layer exhibited a hole conductivity that was 80 times higher than that of the conventional lithium-doped layer. Moreover, after extreme iodide invasion caused by light-soaking at 85°C for 200 hours, the target layer maintained high hole conductivity and well-matched band alignment. This ion-exchange strategy enabled fabrication of perovskite solar cells with a certified power conversion efficiency of 23.9% that maintained 92% under standard illumination at 85°C after 1000 hours.

6.
Adv Mater ; 34(26): e2202100, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35441754

ABSTRACT

Perovskite solar cells (PSCs) have achieved power conversion efficiencies (PCEs) exceeding 25% over the past decade and effective passivation for the interface with high trap density plays a significant role in this process. Here, two organic molecules are studied as passivators, and it is demonstrated that an advantageous molecular geometry and intermolecular ordering, aside from the functional moieties, are of great significance for effective and extensive passivation. Besides, the passivation molecules spontaneously form a uniform passivation network adjacent to the bottom surface of perovskite films during a top-down crystallization via liquid medium annealing, which greatly reduces defect-assisted recombination throughout the whole perovskite/SnO2 interface. The champion device yields an in-lab PCE of 25.05% (certified 24.39%). The investigation provides a more comprehensive understanding of passivation and a new avenue to achieve effective bottom-interface engineering for perovskite photovoltaics.

7.
J Med Virol ; 90(10): 1629-1635, 2018 10.
Article in English | MEDLINE | ID: mdl-29797589

ABSTRACT

The BamHI A rightward frame 1 (BARF1) gene of the Epstein-Barr virus (EBV) is involved in carcinogenesis and immunomodulation of EBV-associated malignancies. The geographical distributions and the disease associations of BARF1 variants remain unclear. In the current study, the BARF1 variants in nasopharyngeal carcinoma (NPC) cases and healthy donors from southern and northern China, the NPC endemic and non-endemic areas, as well as in 153 sequenced EBV genomes from diseased and normal people from around the world, were determined and compared among areas and populations. Only 1 consistent coding change, V29A, and several consistent silent mutations were identified. Two BARF1 types (B95-8 and V29A) and 2 B95-8 subtypes (B95-8t165545c and B95-8P ) were classified. For Chinese isolates, the B95-8 type was dominant in both southern and northern China, but the isolates from southern China showed a higher frequency of the B95-8t165545c subtype than the isolates from northern China (76.0%, 38/50 NPC cases and 50.7%, 37/73 healthy donors vs 26.4%, 24/91 NPC cases and 7.6%, 6/79 healthy donors, P < .0001). Furthermore, the B95-8t165545c subtype was more frequent in NPC cases than healthy donors in both southern China (P = .005) and northern China (P = .001). For EBV genomes, the B95-8P subtype was dominant in northern China, Europe, America, and Australia, while V29A was dominant in Africa. The B95-8t165545c subtype was only identified in Asia and demonstrated high frequency (81.2%, 26/32) in genomes from NPC cases in southern China. These results further reveal conservation and possibly geographically spread variations of BARF1 and may also indicate the preference of EBV strains with the B95-8t165545c subtype in NPC cases, without biological or pathogenic implications.


Subject(s)
Genetic Variation , Herpesvirus 4, Human/isolation & purification , Nasopharyngeal Carcinoma/virology , Viral Proteins/genetics , China , Gene Frequency , Genotype , Humans , Mutation, Missense , Point Mutation
8.
PLoS One ; 10(3): e0121420, 2015.
Article in English | MEDLINE | ID: mdl-25807550

ABSTRACT

Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are the most highly expressed transcripts in all EBV-associated tumors and are involved in both lymphoid and epithelioid carcinogenesis. Our previous study on Chinese isolates from non-endemic area of nasopharyngeal carcinoma (NPC) identified new EBER variants (EB-8m and EB-10m) which were less common but relatively more frequent in NPC cases than healthy donors. In the present study, we determined the EBER variants in NPC cases and healthy donors from endemic and non-endemic areas of NPC within China and compared the EBER variants, in relation to the genotypes at BamHI F region (prototype F and f variant), between population groups and between two areas. According to the phylogenetic tree, four EBER variants (EB-6m, EB-8m, EB-10m and B95-8) were identified. EB-6m was dominant in all population groups except for endemic NPC group, in which EB-8m was dominant. EB-8m was more common in endemic NPC cases (82.0%, 41/50) than non-endemic NPC cases (33.7%, 32/95) (p<0.0001), and it was also more frequent in healthy donors from endemic area (32.4%, 24/74) than healthy donors from non-endemic area (1.1%, 1/92) (p<0.0001). More importantly, the EB-8m was more prevalent in NPC cases than healthy donors in both areas (p<0.0001). The f variant, which has been suggested to associate with endemic NPC, demonstrated preferential linkage with EB-8m in endemic isolates, however, the EB-8m variant seemed to be more specific to NPC isolates than f variant. These results reveal high prevalence of EBER EB-8m variant in endemic NPC cases, suggesting an association between NPC development and EBV isolates carrying EB-8m variant. Our finding identified a small healthy population group that shares the same viral strain which predominates in NPC cases. It could be interesting to carry extensive cohort studies following these individuals to evaluate the risk to develop NPC.


Subject(s)
Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Carcinoma/pathology , China , DNA, Viral/genetics , Genotype , Humans , Nasopharyngeal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...