Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771939

ABSTRACT

Biocompatibility of yttria (3 mol%) stabilized zirconia ceramics, 3Y-TZP, was affected to a large degree as a result of protein adsorption from human saliva that in turn depends on materials surface properties. Variable nano-roughness levels in 3Y-TZP discs were characterized and tested for specificity and selectivity with respect to size and uptake for human salivary protein.

2.
Materials (Basel) ; 14(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34640252

ABSTRACT

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at -196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at -196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...