Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 32(12): 5610-5622, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33877988

ABSTRACT

Most existing control methods for quadrotor unmanned aerial vehicles (UAVs) are based on the primary assumption that the center of gravity (CoG) is fixed and is in the same position as the centroid, which is not necessarily true with swing load as continuously making CoG vary with the swing angle and substantially complicating the dynamic model of UAV. This article presents an adaptive learning and fault-tolerant control scheme for quadrotor UAVs with varying CoG and unknown moment of inertia. First, we establish the dynamic model of quadrotor UAVs in the presence of time-varying CoG, input saturation, and actuator fault. Then, we design a fault-tolerant adaptive learning controller for the quadrotor UAVs and show that both linear and angular velocity tracking errors are ensured to converge to a residual set around zero in the presence of full-state constraints. Furthermore, all signals in the closed-loop system are uniformly ultimately bounded. Simulation studies also confirm the effectiveness of the proposed control method.

2.
IEEE Trans Neural Netw Learn Syst ; 29(2): 286-298, 2018 02.
Article in English | MEDLINE | ID: mdl-27845679

ABSTRACT

In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...