Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Nat Commun ; 15(1): 1835, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418488

ABSTRACT

B- and T-lymphocyte attenuator (BTLA) levels are increased in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). This condition is characterized by susceptibility to infection and T-cell immune exhaustion. However, whether BTLA can induce T-cell immune exhaustion and increase the risk of infection remains unclear. Here, we report that BTLA levels are significantly increased in the circulating and intrahepatic CD4+ T cells from patients with HBV-ACLF, and are positively correlated with disease severity, prognosis, and infection complications. BTLA levels were upregulated by the IL-6 and TNF signaling pathways. Antibody crosslinking of BTLA activated the PI3K-Akt pathway to inhibit the activation, proliferation, and cytokine production of CD4+ T cells while promoting their apoptosis. In contrast, BTLA knockdown promoted their activation and proliferation. BTLA-/- ACLF mice exhibited increased cytokine secretion, and reduced mortality and bacterial burden. The administration of a neutralizing anti-BTLA antibody reduced Klebsiella pneumoniae load and mortality in mice with ACLF. These data may help elucidate HBV-ACLF pathogenesis and aid in identifying novel drug targets.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B, Chronic , Animals , Humans , Mice , Acute-On-Chronic Liver Failure/complications , CD4-Positive T-Lymphocytes , Cytokines/metabolism , Hepatitis B, Chronic/complications , Phosphatidylinositol 3-Kinases , Receptors, Immunologic/metabolism , T-Cell Exhaustion
2.
J Virol ; 98(2): e0134523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38226815

ABSTRACT

Chronic hepatitis B virus (HBV) infection (CHB) is a risk factor for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Covalently closed circular DNA serves as the sole transcription template for all viral RNAs and viral transcription is driven and enhanced by viral promoter and enhancer elements, respectively. Interactions between transcription factors and these cis-elements regulate their activities and change the production levels of viral RNAs. Here, we report the identification of homeobox protein MSX-1 (MSX1) as a novel host restriction factor of HBV in liver. In both HBV-transfected and HBV-infected cells, MSX1 suppresses viral gene expression and genome replication. Mechanistically, MSX1 downregulates enhancer II/core promoter (EnII/Cp) activity via direct binding to an MSX1 responsive element within EnII/Cp, and such binding competes with hepatocyte nuclear factor 4α binding to EnII/Cp due to partial overlap between their respective binding sites. Furthermore, CHB patients in immune active phase express higher levels of intrahepatic MSX1 but relatively lower levels of serum and intrahepatic HBV markers compared to those in immune tolerant phase. Finally, MSX1 was demonstrated to induce viral clearance in two mouse models of HBV persistence, suggesting possible therapeutic potential for CHB.IMPORTANCECovalently closed circular DNA plays a key role for the persistence of hepatitis B virus (HBV) since it serves as the template for viral transcription. Identification of transcription factors that regulate HBV transcription not only provides insights into molecular mechanisms of viral life cycle regulation but may also provide potential antiviral targets. In this work, we identified host MSX1 as a novel restriction factor of HBV transcription. Meanwhile, we observed higher intrahepatic MSX1 expression in chronic hepatitis B virus (CHB) patients in immune active phase compared to those in immune tolerant phase, suggesting possible involvement of MSX1 in the regulation of HBV activity by the host. Lastly, intrahepatic overexpression of MSX1 delivered by recombinant adenoviruses into two mouse models of HBV persistence demonstrated MSX1-mediated repression of HBV in vivo, and MSX1-induced clearance of intrahepatic HBV DNA in treated mice suggested its potential as a therapeutic target for the treatment of CHB.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , MSX1 Transcription Factor , Animals , Humans , Mice , DNA, Circular , DNA, Viral/genetics , Hepatitis B/metabolism , Hepatitis B virus/physiology , RNA, Viral , Transcription Factors/genetics , Virus Replication/genetics , MSX1 Transcription Factor/metabolism
3.
J Infect Dis ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38149984

ABSTRACT

BACKGROUND: Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS: We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS: In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS: In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.

4.
J Med Virol ; 95(9): e29062, 2023 09.
Article in English | MEDLINE | ID: mdl-37665238

ABSTRACT

Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), the transcription template for all viral mRNAs, is highly stable and current treatment options cannot effectively induce its clearance. Previously, we established an HBV persistence mouse model based on a clinical isolate (termed BPS) and identified interleukin-21 (IL-21) as a potent inducer of HBV clearance. Lipid nanoparticle (LNP) mediated delivery of mRNA has proven to be a highly safe and effective delivery platform. This work explored the applicability and effectiveness of the mRNA-LNP platform in IL-21-based HBV therapies. First, LNP-encapsulated murine IL-21 mRNA (LNP-IL-21) was prepared, characterized, and demonstrated to engender IL-21 expression in vitro and in vivo. Next, LNP-IL-21 was shown to induce clearance of both serum and intrahepatic HBV antigen and DNA in two HBV persistence mouse models based on BPS and recombinant cccDNA (rcccDNA), respectively, which was associated with HBV-specific humoral and cellular immune responses. Furthermore, peripheral blood mononuclear cells from BPS persistence mice treated ex vivo with LNP-IL-21 and HBV surface antigen (HBsAg) could induce similar HBV clearance upon infusion into recipient mice. These findings indicated that IL-21 combined with mRNA-LNP platform represents a valid and promising strategy for developing novel therapeutics against chronic HBV infection.


Subject(s)
Hepatitis B virus , Leukocytes, Mononuclear , Animals , Mice , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/genetics , Disease Models, Animal , RNA, Messenger
5.
J Med Virol ; 95(8): e28997, 2023 08.
Article in English | MEDLINE | ID: mdl-37537950

ABSTRACT

During March 2022 to January 2023, two Omicron waves hit Shanghai and caused a massive number of reinfections. To better understand the incidence and clinical characteristics of SARS-CoV-2 reinfection in Shanghai, China, we conducted a multicenter cohort study. COVID-19 patients first infected with BA.2 (March 1, 2022-May 23, 2022) who were quarantined in Huashan Hospital, Renji Hospital, and Shanghai Jing'an Central Hospital were followed up for reinfection from June 1, 2022 to January 31, 2023. Of 897 primary infections, 148 (16.5%) experienced reinfection. Incidence rate of reinfection was 0.66 cases per 1000 person-days. Female gender (adjusted odds ratio [aOR]= 2.19, 95% confidence interval [CI]: 1.29-3.83) was a risk factor for reinfection. The four most common symptoms of reinfections during the circulation of BA.5 sublineages were cough (62.59%), sore throat (54.42%), fatigue (48.98%), and fever (42.57%). Having received a booster vaccination was not associated with reduced severity of reinfection in comparison with not having received booster vaccination. After matched 1:1 by age and sex, we found that reinfections with BA.5 sublineages had significantly lower occurrence and severity of fever, fatigue, sore throat, and cough, as compared to primary infections with BA.5 sublineages. SARS-CoV-2 Omicron reinfections were less severe than Omicron primary infections during the circulation of the same subvariant. Protection offered by both vaccination and previous infection was poor against SARS-CoV-2 reinfection.


Subject(s)
COVID-19 , Pharyngitis , Female , Humans , China/epidemiology , Cohort Studies , Cough , COVID-19/epidemiology , Fatigue , Fever , Incidence , Pain , Reinfection/epidemiology , SARS-CoV-2 , Male
6.
Antiviral Res ; 216: 105643, 2023 08.
Article in English | MEDLINE | ID: mdl-37236321

ABSTRACT

Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Mice , Animals , Hepatitis B virus/genetics , Hepatitis B e Antigens/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Virus Replication
7.
Front Cell Infect Microbiol ; 13: 1120300, 2023.
Article in English | MEDLINE | ID: mdl-36909726

ABSTRACT

Background: Hepatitis B surface antigen (HBsAg) loss, namely, the functional cure, can be achieved through the pegylated interferon (PEG-IFN)-based therapy. However, it is an unignorable fact that a small proportion of patients who achieved functional cure develop HBsAg reversion (HRV) and the related factors are not well described. Methods: A total of 112 patients who achieved PEG-IFN-induced HBsAg loss were recruited. HBV biomarkers and biochemical parameters were examined dynamically. HBV RNA levels were assessed in the cross-sectional analysis. The primary endpoint was HRV, defined as the reappearance of HBsAg after PEG-IFN discontinuation. Results: HRV occurred in 17 patients during the follow-up period. Univariable analysis indicated that hepatitis B e antigen (HBeAg) status, different levels of hepatitis B surface antibody (anti-HBs), and hepatitis B core antibody (anti-HBc) at the end of PEG-IFN treatment (EOT) were significantly associated with the incidence of HRV through using the log-rank test. Additionally, time-dependent receiver operating characteristic (ROC) analysis showed that the anti-HBs was superior to anti-HBc in predictive power for the incidence of HRV during the follow-up period. Multivariable Cox proportional hazard analysis found that anti-HBs ≥1.3 log10IU/L (hazard ratio (HR), 0.148; 95% confidence interval (CI), 0.044-0.502) and HBeAg negativity (HR, 0.183; 95% CI, 0.052-0.639) at EOT were independently associated with lower incidence of HRV. Cross-sectional analysis indicated that the HBV RNA levels were significantly correlated with the HBsAg levels in patients with HRV (r=0.86, p=0.003). Conclusions: EOT HBeAg negativity and anti-HBs ≥1.3 log10IU/L identify the low risk of HRV after PEG-IFN discontinuation.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B, Chronic , Humans , Hepatitis B e Antigens/therapeutic use , Interferon-alpha/therapeutic use , Antiviral Agents/therapeutic use , Cross-Sectional Studies , Hepatitis B, Chronic/drug therapy , Treatment Outcome , Polyethylene Glycols/therapeutic use , Hepatitis B Antibodies/therapeutic use , DNA, Viral , Recombinant Proteins/therapeutic use , Hepatitis B virus/genetics
8.
Hepatol Int ; 17(4): 1000-1015, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36944807

ABSTRACT

BACKGROUND AND AIMS: Persistent inflammatory response and immune activation are the core mechanisms underlying acute-on-chronic liver failure (ACLF). Previous studies have shown that deficiency of V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) exacerbates the progression of inflammatory diseases. We aimed to clarify the role of VISTA in the pathogenesis of ACLF. METHODS: Blood and liver samples were collected from healthy subjects, stable cirrhosis, and ACLF patients to characterize VISTA expression and function. An ACLF mouse model was used to ascertain potential benefits of anti-VISTA monoclonal antibody (mAb) treatment. RESULTS: VISTA expression was significantly reduced in the naïve and central memory CD4+ T cells from patients with ACLF. The expression of VISTA on CD4+ T cells was associated with disease severity and prognosis. VISTA downregulation contributed to the activation and proliferation of CD4+ T cells and enhanced the differentiation of T helper 17 cells (Th17) and secretion of inflammatory cytokines through the activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Moreover, agonistic anti-VISTA mAb treatment inhibited the activation and cytokine production of CD4+ T cells and reduced mortality and liver inflammation of the ACLF mice. CONCLUSIONS: The decreased expression of VISTA may facilitate development of Th17 cells and promote the progression of inflammation in ACLF patients. These findings are helpful for elucidating the pathogenesis of ACLF and for the identification of new drug targets.


Subject(s)
Acute-On-Chronic Liver Failure , Animals , Mice , Th17 Cells/metabolism , Inflammation/metabolism , Cytokines , Cell Differentiation
9.
J Med Virol ; 95(2): e28550, 2023 02.
Article in English | MEDLINE | ID: mdl-36734068

ABSTRACT

Prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has received much attention since it is associated with mortality and is hypothesized as the cause of long COVID-19 and the emergence of a new variant of concerns. However, a prediction model for the accurate prediction of prolonged infection is still lacking. A total of 2938 confirmed patients with COVID-19 diagnosed by positive reverse transcriptase-polymerase chain reaction tests were recruited retrospectively. This study cohort was divided into a training set (70% of study patients; n = 2058) and a validation set (30% of study patients; n = 880). Univariate and multivariate logistic regression analyses were utilized to identify predictors for prolonged infection. Model 1 included only preadmission variables, whereas Model 2 also included after-admission variables. Nomograms based on variables of Model 1 and Model 2 were built for clinical use. The efficiency of nomograms was evaluated by using the area under the curve, calibration curves, and concordance indexes (C-index). Independent predictors of prolonged infection included in Model 1 were: age ≥75 years, chronic kidney disease, chronic lung disease, partially or fully vaccinated, and booster. Additional independent predictors in Model 2 were: treated with nirmatrelvir/ritonavir more than 5 days after diagnosis and glucocorticoid. The inclusion of after-admission variables in the model slightly improved the discriminatory power (C-index in the training cohort: 0.721 for Model 1 and 0.737 for Model 2; in the validation cohort: 0.699 for Model 1 and 0.719 for Model 2). In our study, we developed and validated predictive models based on readily available variables of preadmission and after-admission for predicting prolonged SARS-CoV-2 infection of patients with COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Nomograms , SARS-CoV-2 , Retrospective Studies , Post-Acute COVID-19 Syndrome
10.
Antiviral Res ; 211: 105510, 2023 03.
Article in English | MEDLINE | ID: mdl-36581048

ABSTRACT

MicroRNA-124 (miR-124) is related to liver injury due to chronic hepatitis B (CHB) and hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). However, the mechanism whereby miR-124 regulates liver inflammation remains unknown. In this study, we show that serum miR-124 serves as a compensatory predictive factor for organ failure and the 28-day prognosis of patients with HBV-ACLF. Moreover, within a mouse model of concanavalin A-induced acute liver injury, miR-124 is highly expressed in Kupffer cells. Overexpression of miR-124 significantly decreases interleukin-6 (IL-6) secretion, and relieves pathological liver necrosis to a great extent. Mechanistically, miR-124 directly targets the 3'-untranslated region of signal transducer and activator of transcription 3 (STAT3) and inhibits IL-6/STAT3 signaling, which reduces pro-inflammatory Kupffer cell polarization. Collectively, our findings suggest that miR-124 can potentially serve as a predictive biomarker for HBV-ACLF prognosis and may represent a promising therapeutic target for relieving severe liver injury resulting from cytokine storms.


Subject(s)
Hepatitis B, Chronic , MicroRNAs , Animals , Mice , Kupffer Cells/metabolism , Kupffer Cells/pathology , Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism , Liver/pathology , Hepatitis B virus/metabolism
11.
Antiviral Res ; 206: 105404, 2022 10.
Article in English | MEDLINE | ID: mdl-36049553

ABSTRACT

Chronic infection by hepatitis B virus (HBV) is associated with high risks of liver fibrosis, cirrhosis and hepatocellular carcinoma. HBV covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocyte serves as transcription template. Neither natural resolution of acute infection nor current treatment options for chronic infection are believed to cause cccDNA clearance. We previously showed that injection of IL-33-expressing plasmid facilitated clearance of intrahepatic HBV DNA in a mouse model of HBV persistence. In this work, HBV-targeting therapeutic effects of IL-33 were further explored. Murine IL-33 delivered by recombinant adeno-associated virus (AAV-mIL-33) induced clearance of both serum HBV markers and intrahepatic HBV DNA in two mouse models of HBV persistence based on replicon plasmid and recombinant cccDNA (rcccDNA) respectively. Clearance was associated with serum ALT elevations and liver infiltrations by CD4+ and CD8+ T cells, indicating IL-33-induced cellular immune responses against HBV-harboring cells. Adoptive transfer of splenocytes from AAV-mIL-33-cured mice was indeed sufficient to engender similar clearance in recipient mice. In vitro, intracellular, instead of extracellular, IL-33 was mainly responsible for repressing viral transcription, protein production and genome replication in Huh7 cells transfected with HBV replicon or rcccDNA. IL-33 was shown to be recruited onto rcccDNA minichromosome accompanied by loss of transcriptional activation epigenetic marks. Finally, transfection of IL-33 into HBV-infected HepG2/NTCP cells resulted in reduced transcription, antigen expression and genome replication, suggesting repression of canonical cccDNA. These data demonstrated diverse inhibitory effects on HBV and HBV-infected cells mediated by IL-33, and suggest IL-33 as an interesting therapeutic candidate.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Interleukin-33 , Animals , CD8-Positive T-Lymphocytes/metabolism , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Disease Models, Animal , Hepatitis B/immunology , Hepatitis B/metabolism , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/metabolism , Interleukin-33/genetics , Interleukin-33/therapeutic use , Mice , Virus Replication/genetics
12.
Molecules ; 27(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956950

ABSTRACT

HBx plays a significant role in the cccDNA epigenetic modification regulating the hepatitis B virus (HBV) life cycle and in hepatocyte proliferation and carcinogenesis. By using the sleeping-beauty transposon system, we constructed a tetracycline-induced HBx-expressing stable cell line, SBHX21. HBx with a HiBiT tag can be quickly detected utilizing a NanoLuc-based HiBiT detection system. By screening a drug library using SBHX21 cells, we identified estradiol benzoate as a novel anti-HBx agent. Estradiol benzoate also markedly reduced the production of HBeAg, HBsAg, HBV pgRNA, and HBV DNA in a dose-dependent manner, suggesting that estradiol benzoate could be an anti-HBV agent. Docking model results revealed that estradiol benzoate binds to HBx at TRP87 and TRP107. Collectively, our results suggest that estradiol benzoate inhibits the HBx protein and HBV transcription and replication, which may serve as a novel anti-HBV molecular compound for investigating new treatment strategies for HBV infection.


Subject(s)
Hepatitis B virus , Trans-Activators , Estradiol/analogs & derivatives , Hep G2 Cells , Hepatitis B virus/metabolism , Humans , Luciferases , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication
13.
J Med Virol ; 94(12): 5790-5801, 2022 12.
Article in English | MEDLINE | ID: mdl-35961786

ABSTRACT

SARS-CoV-2 Omicron variant seemed to cause milder disease compared to previous predominated variants. We aimed to conduct a meta-analysis to assess the pooled proportion of nonsevere disease and asymptomatic infection among COVID-19 patients infected with Omicron and Delta. We searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI) databases. We included studies of SARS-CoV-2 Omicron infection from November 1, 2021, to April 18, 2022, and studies of Delta infection from October 1, 2020, to June 30, 2022. Studies without corresponding data, with less than 50 patients, or obviously biased concerning main outcome were excluded. Meta-analysis was performed in R 4.2.0 with the "meta" package. Subgroup analyses were conducted by study group and vaccination status. The pooled proportion of asymptomatic infection and nonsevere disease with Omicron were 25.5% (95% confidence interval [CI] 17.0%-38.2%) and 97.9% (95% CI 97.1%-98.7%), significantly higher than those of Delta with 8.4% (95% CI 4.4%-16.2%) and 91.4% (95% CI 87.0%-96.0%). During Omicron wave, children and adolescents had higher proportion of asymptomatic infection, SOTR and the elderly had lower proportion of nonsevere disease, vaccination of a booster dose contributed to higher proportion of both asymptomatic infection and nonsevere disease. This study estimates the pooled proportion of asymptomatic infection and nonsevere disease caused by SARS-CoV-2 Omicron compared to other predominant variants. The result has important implications for future policy making.


Subject(s)
Asymptomatic Infections , COVID-19 , Adolescent , Aged , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Child , China , Humans , SARS-CoV-2
14.
Materials (Basel) ; 15(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408034

ABSTRACT

Warm compression tests were carried out on low carbon and low alloy steel at temperatures of 600−850 °C and stain rates of 0.01−10 s−1. The evolution of microstructure and texture was studied using a scanning electron microscope and electron backscattered diffraction. The results indicated that cementite spheroidization occurred and greatly reduced at 750 °C due to a phase transformation. Dynamic recrystallization led to a transition from {112}<110> texture to {111}<112> texture. Below 800 °C, the intensity and variation of texture with deformation temperature is more significant than that above 800 °C. The contents of the {111}<110> texture and {111}<112> texture were equivalent above 800 °C, resulting in the better uniformity of γ-fiber texture. Nucleation of <110>//ND-oriented grains increased, leading to the strengthening of <110>//ND texture. Microstructure analysis revealed that the uniform and refined grains can be obtained after deformation at 800 °C and 850 °C. The texture variation reflected the fact that 800 °C was the critical value for temperature sensitivity of warm deformation. At a large strain rate, the lowest dislocation density appeared after deformation at 800 °C. Therefore, 800 °C is a suitable temperature for the warm forming application, where the investigated material is easy to deform and evolves into a uniform and refined microstructure.

15.
J Exp Med ; 219(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35254403

ABSTRACT

Hepatitis B virus exposure in children usually develops into chronic hepatitis B (CHB). Although hepatitis B surface antigen (HBsAg)-specific CD8+ T cells contribute to resolve HBV infection, they are preferentially undetected in CHB patients. Moreover, the mechanism for this rarely detected HBsAg-specific CD8+ T cells remains unexplored. We herein found that the frequency of HBsAg-specific CD8+ T cells was inversely correlated with expansion of monocytic myeloid-derived suppressor cells (mMDSCs) in young rather than in adult CHB patients, and CCR9 was upregulated by HBsAg on mMDSCs via activation of ERK1/2 and IL-6. Sequentially, the interaction between CCL25 and CCR9 mediated thymic homing of mMDSCs, which caused the cross-presentation, transferring of peripheral HBsAg into the thymic medulla, and then promoted death of HBsAg-specific CD8+ thymocytes. In mice, adoptive transfer of mMDSCs selectively obliterated HBsAg-specific CD8+ T cells and facilitated persistence of HBV in a CCR9-dependent manner. Taken together, our results uncovered a novel mechanism for establishing specific CD8+ tolerance to HBsAg in chronic HBV infection.


Subject(s)
Hepatitis B, Chronic , Myeloid-Derived Suppressor Cells , Animals , CD8-Positive T-Lymphocytes , Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Mice
16.
Nucleic Acids Res ; 50(4): 2157-2171, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35137191

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is associated with liver cirrhosis and hepatocellular carcinoma. Upon infection of hepatocytes, HBV covalently closed circular DNA (cccDNA) exists as histone-bound mini-chromosome, subjected to transcriptional regulation similar to chromosomal DNA. Here we identify high mobility group AT-hook 1 (HMGA1) protein as a positive regulator of HBV transcription that binds to a conserved ATTGG site within enhancer II/core promoter (EII/Cp) and recruits transcription factors FOXO3α and PGC1α. HMGA1-mediated upregulation of EII/Cp results in enhanced viral gene expression and genome replication. Notably, expression of endogenous HMGA1 was also demonstrated to be upregulated by HBV, which involves HBV X protein (HBx) interacting with SP1 transcription factor to activate HMGA1 promoter. Consistent with these in vitro results, chronic hepatitis B patients in immune tolerant phase display both higher intrahepatic HMGA1 protein levels and higher serum HBV markers compared to patients in inactive carrier phase. Finally, using a mouse model of HBV persistence, we show that targeting endogenous HMGA1 through RNA interference facilitated HBV clearance. These data establish HMGA1 as an important positive regulator of HBV that is reciprocally upregulated by HBV via HBx and also suggest the HMGA1-HBV positive feedback loop as a potential therapeutic target.


Subject(s)
Hepatitis B, Chronic , Liver Neoplasms , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , HMGA1a Protein/genetics , HMGA1a Protein/metabolism , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B, Chronic/genetics , Humans , Liver Neoplasms/genetics , Trans-Activators , Transcription Factors/genetics , Transcription Factors/metabolism , Viral Regulatory and Accessory Proteins , Virus Replication/genetics
17.
Emerg Microbes Infect ; 11(1): 616-628, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35109781

ABSTRACT

Previous studies have revealed multiple tissue- or cell-specific or enriched miRNA profiles. However, miRNA profiles enriched in hepatic cell types and their effect on HBV replication have not been well elucidated. In this study, primary human hepatocytes (PHHs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) were prepared from liver specimens of non-HBV-infected patients. Four hepatic cell type-enriched miRNA profiles were identified from purified liver cells miRNA microarray assay. The results revealed that 12 miRNAs, including miR-122-5p and miR-192-3p were PHH-enriched; 9 miRNAs, including miR-142-5p and miR-155-5p were KC-enriched; 6 miRNAs, including miR-126-3p and miR-222-3p were LSEC-enriched; and 14 miRNAs, including miR-214-3p and miR-199a-3p were HSC-enriched. By testing the effect of 11 PHH-enriched miRNAs on HBV production, we observed that miR-192-3p had the greatest pro-virus effect in hepatic cell lines. Moreover, we further found that miR-192-3p promoted HBV replication and gene expression through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in HepG2.2.15 cells. Additionally, the serum and hepatic miR-192-3p expression levels were significantly higher in chronic hepatitis B patients than in healthy controls and serum miR-192-3p positively correlated with the serum levels of HBV DNA and HBsAg. Collectively, we identified miRNA profiles enriched in four hepatic cell types and revealed that PHH-enriched miR-192-3p promoted HBV replication through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in hepatic cell lines. Our study provides a specific perspective for the role of hepatic cell type-enriched miRNA in interaction with viral replication and various liver pathogenesis.


Subject(s)
Hepatitis B virus , MicroRNAs , Endothelial Cells/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Humans , Liver/pathology , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , Trans-Activators
18.
Front Immunol ; 13: 966514, 2022.
Article in English | MEDLINE | ID: mdl-36685516

ABSTRACT

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) results in high susceptibility to infection. Although granulocytic myeloid-derived suppressor cells (gMDSC) are elevated in patients with HBV-ACLF, their role in HBV-ACLF pathogenesis is unknown. To elucidate the mechanism of gMDSC expansion and susceptibility to infection in HBV-ACLF patients, we analyzed the proportion of gMDSC in the peripheral blood and organ tissues of patients with HBV-ACLF and an ACLF mouse model established by continuous injection (eight times) of Concanavalin by flow cytometry and immunohistochemistry. We found that the proportion of gMDSC increased significantly in the blood and liver of patients with HBV-ACLF. This increase was positively correlated with disease severity, prognosis, and infection. gMDSC percentages were higher in peripheral blood, liver, spleen, and bone marrow than control levels in the ACLF mouse model. Immunofluorescence revealed that the gMDSC count increased in the liver of patients with HBV-ACLF as well as in the liver and spleen of ACLF mice. We further exposed peripheral blood monocyte cells from healthy donors to plasma from HBV-ACLF patients, recombinant cytokines, or their inhibitor, and found that TNF-α led to gMDSC expansion and significant upregulation of indoleamine 2, 3-dioxygenase (IDO), while blocking TNF-α signaling decreased gMDSC. Moreover, we detected proliferation and cytokine secretion of T lymphocytes when purified gMDSC was co-cultured with Pan T cells or IDO inhibitor and found that TNF-α-induced gMDSC inhibited T cell proliferation and interferon-γ production through the IDO signaling pathway. Lastly, the ability of gMDSC to phagocytose bacteria was low in patients with HBV-ACLF. Our findings elucidate HBV-ACLF pathogenesis and provide potential therapeutic targets.


Subject(s)
Acute-On-Chronic Liver Failure , Myeloid-Derived Suppressor Cells , Mice , Animals , Hepatitis B virus/metabolism , Interleukin-10 , Tumor Necrosis Factor-alpha/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/pathology , Disease Susceptibility
19.
BMC Gastroenterol ; 21(1): 422, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34758747

ABSTRACT

BACKGROUND: Although the Asian Pacific Association for the Study of the Liver acute-on-chronic liver failure (ACLF) research consortium (AARC) ACLF score is easy to use in patients with hepatitis b virus-related ACLF (HBV-ACLF), serum lactate is not routinely tested in primary hospitals, and its value may be affected by some interference factors. Neutrophil-to-lymphocyte ratio (NLR) is used to assess the status of bacterial infection (BI) or outcomes in patients with various diseases. We developed an NLR-based AARC ACLF score and compared it with the existing model. METHODS: A total of 494 HBV-ACLF patients, enrolled in four tertiary academic hospitals in China with 90-day follow-up, were analysed. Prognostic performance of baseline NLR and lactate were compared between cirrhotic and non-cirrhotic subgroups via the receiver operating curve and Kaplan-Meier analyses. A modified AARC ACLF (mAARC ACLF) score using NLR as a replacement for lactate was developed (n = 290) and validated (n = 204). RESULTS: There were significantly higher baseline values of NLR in non-survivors, patients with admission BI, and those with higher grades of ACLF compared with the control groups. Compared with lactate, NLR better reflected BI status in the cirrhotic subgroup, and was more significantly correlated with CTP, MELD, MELD-Na, and the AARC score. NLR was an independent predictor of 90-day mortality, and was categorized into three risk grades (< 3.10, 3.10-4.78, and > 4.78) with 90-day cumulative mortalities of 8%, 21.2%, and 77.5% in the derivation cohort, respectively. The mAARC ACLF score, using the three grades of NLR instead of corresponding levels of lactate, was superior to the other four scores in predicting 90-day mortality in the derivation (AUROC 0.906, 95% CI 0.872-0.940, average P < 0.001) and validation cohorts (AUROC 0.913, 95% CI 0.876-0.950, average P < 0.01), with a considerable performance in predicting 28-day mortality in the two cohorts. CONCLUSIONS: The prognostic value of NLR is superior to that of lactate in predicting short-term mortality risk in cirrhotic and non-cirrhotic patients with HBV-ACLF. NLR can be incorporated into the AARC ACLF scoring system for improving its prognostic accuracy and facilitating the management guidance in patients with HBV-ACLF in primary hospitals.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B virus , Humans , Lymphocytes , Neutrophils , Prognosis , Retrospective Studies
20.
Open Forum Infect Dis ; 8(9): ofab410, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34552996

ABSTRACT

Human leukocyte antigen (HLA) polymorphism is hypothesized to be associated with diverse immune responses toward infectious diseases. Herein, by comparing against multiple subpopulation groups as control, we confirmed that HLA-B*15:27 and HLA-DRB1*04:06 were associated with coronavirus disease 2019 susceptibility in China. Both alleles were predicted to have weak binding affinities toward viral proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...