Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.699
Filter
2.
J Sports Sci ; : 1-12, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967313

ABSTRACT

The number of runners and the incidence of running-related injuries (RRIs) are on the rise. Real-time biofeedback gait retraining offers a promising approach to RRIs prevention. However, due to the diversity in study designs and reported outcomes, there remains uncertainty regarding the efficacy of different forms of feedback on running gait biomechanics. Three databases: MEDLINE, PUBMED, and SPORTDiscus were searched to identify relevant studies published up to March 2024, yielding 4646 articles for review. The quality of the included studies was assessed using the Downs and Black Quality checklist. Primary outcomes, including Peak Tibial Acceleration (PTA), Vertical Average Loading Rate (VALR), and Vertical Instantaneous Loading Rate (VILR), were analysed through meta-analysis. 24 studies met the inclusion criteria and were analysed in this review.17 used visual biofeedback (VB) while 14 chose auditory biofeedback (AB). The meta-analysis revealed a reduction in loading variables both immediately following the intervention and after extended training, with both visual and auditory feedback. Notably, the decrease in loading variables was more pronounced post-training and VB proved to be more effective than AB. Real-time biofeedback interventions are effective in lowering loading variables associated with RRIs. The impact is more substantial with sustained training, and VB outperforms AB in terms of effectiveness.

3.
Medicine (Baltimore) ; 103(27): e38822, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968460

ABSTRACT

This study aimed to identify highly valuable blood indicators for predicting the clinical outcomes of patients with aortic aneurysms (AA). Baseline data of 1180 patients and 16 blood indicators were obtained from the public Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. The association of blood indicators with 4 types of clinical outcomes was analyzed, and the prediction performance of core indicators on different outcomes was next evaluated. Then, we explored the detailed association between core indicators and key outcomes among subgroups. Finally, a machine learning model was established to improve the prediction performance. Generalized linear regression analysis indicated that only red cell volume distribution width (RDW) was commonly associated with 4 end-points including surgery requirement, ICU stay requirement, length of hospital stay, and in-hospital death (all P < .05). Further, RDW showed the best performance for predicting in-hospital death by receiver operating characteristic (ROC) analysis. The significant association between RDW and in-hospital death was then determined by 3 logistic regression models adjusting for different variables (all P < .05). Stratification analysis showed that their association was mainly observed in unruptured AA and abdominal AA (AAA, all P < .05). We subsequently established an RDW-based model for predicting the in-hospital death only in patients with unruptured AAA. The favorable prediction performance of the RDW-based model was verified in training, validation, and test sets. RDW was found to make the greatest contribution to in-hospital death within the model. RDW had favorable clinical value for predicting the in-hospital death of patients, especially in unruptured AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Erythrocyte Indices , Hospital Mortality , Humans , Aortic Aneurysm, Abdominal/blood , Aortic Aneurysm, Abdominal/mortality , Male , Female , Aged , Middle Aged , Length of Stay/statistics & numerical data , ROC Curve , Machine Learning
4.
Theranostics ; 14(9): 3760-3776, 2024.
Article in English | MEDLINE | ID: mdl-38948060

ABSTRACT

Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Metabolomics , Primary Ovarian Insufficiency , Sleep Deprivation , Animals , Female , Primary Ovarian Insufficiency/metabolism , Mice , Dysbiosis/microbiology , Dysbiosis/metabolism , Metabolomics/methods , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Fecal Microbiota Transplantation , Disease Models, Animal , Apoptosis
5.
Proc Natl Acad Sci U S A ; 121(27): e2322291121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913905

ABSTRACT

Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.


Subject(s)
Altitude , Animals , Sheep/genetics , Tibet , Genomic Structural Variation , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation , Genome , Acclimatization/genetics
6.
J Mol Diagn ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925456

ABSTRACT

PMS2 is one of the DNA-mismatch repair genes included in routine genetic testing for Lynch syndrome and colorectal, ovarian, and endometrial cancers. PMS2 is also included in the American College of Medical Genetics and Genomics' List of Secondary Findings Genes in the context of clinical exome and genome sequencing. However, sequencing of PMS2 by short-read-based next-generation sequencing technologies is complicated by the presence of the pseudogene PMS2CL, and is often supplemented by long-range-based approaches, such as long-range PCR or long-read-based next-generation sequencing, which increases the complexity and cost. This article describes a bioinformatics homology triage workflow that can eliminate the need for long-read-based testing for PMS2 in the vast majority of patients undergoing exome sequencing, thus simplifying PMS2 testing and reducing the associated cost.

7.
Adv Mater ; : e2406682, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837816

ABSTRACT

The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, this work fabricates a hierarchical CeO2/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER). This material exhibits superior overpotentials and enhanced stability. Multiple potential-dependent experiments reveal that CeO2 promotes oxygen-species exchange, especially OH- ions, between catalyst and environment, thereby optimizing the redox transformation of hydroxide and the adsorption of oxygen-containing intermediates during OER. This is attributed to the reduction in the adsorption energy barrier of Ni to *OH facilitated by CeO2, particularly the near-interfacial Ni sites. The less-damaging adsorbate evolution mechanism and the CeO2 hierarchical shell significantly enhance the structural robustness, leading to exceptional stability. Additionally, the observed "self-healing" phenomenon provides further substantiation for the accelerated oxygen exchange. This work provides a neat strategy for the synthesis of ceria-based complex hollow electrocatalysts, as well as an in-depth insight into the co-catalytic role of CeO2 in terms of oxygen transfer.

10.
Imeta ; 3(2): e166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882497

ABSTRACT

Asthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.

11.
Int J Ophthalmol ; 17(6): 1066-1072, 2024.
Article in English | MEDLINE | ID: mdl-38895681

ABSTRACT

AIM: To assess the clinical efficacy and safety of combining panretinal photocoagulation (PRP) with intravitreal conbercept (IVC) injections for patients with high-risk proliferative diabetic retinopathy (HR-PDR) complicated by mild or moderate vitreous hemorrhage (VH), with or without diabetic macular edema (DME). METHODS: Patients diagnosed with VH with/without DME secondary to HR-PDR and received PRP combined with IVC injections were recruited in this retrospective study. Upon establishing the patient's diagnosis, an initial IVC was performed, followed by prompt administration of PRP. In cases who significant bleeding persisted and impeded the laser operation, IVC was sustained before supplementing with PRP. Following the completion of PRP, patients were meticulously monitored for a minimum of six months. Laser therapy and IVC injections were judiciously adjusted based on fundus fluorescein angiography (FFA) results. Therapeutic effect and the incidence of adverse events were observed. RESULTS: Out of 42 patients (74 eyes), 29 were male and 13 were female, with a mean age of 59.17±12.74y (33-84y). The diabetic history was between 1wk and 26y, and the interval between the onset of visual symptoms and diagnosis of HR-PDR was 1wk-1y. The affected eye received 2.59±1.87 (1-10) IVC injections and underwent 5.5±1.02 (4-8) sessions of PRP. Of these, 68 eyes received PRP following 1 IVC injection, 5 eyes after 2 IVC injections, and 1 eye after 3 IVC injections. Complete absorption of VH was observed in all 74 eyes 5-50wk after initial treatment, with resolution of DME in 51 eyes 3-48wk after initial treatment. A newly developed epiretinal membrane was noted in one eye. Visual acuity significantly improved in 25 eyes. No complications such as glaucoma, retinal detachment, or endophthalmitis were reported. CONCLUSION: The study suggests that the combination of PRP with IVC injections is an effective and safe modality for treating diabetic VH in patients with HR-PDR.

12.
ACS Appl Mater Interfaces ; 16(24): 31666-31676, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833630

ABSTRACT

ß-Ga2O3 is an ultrawide-band gap semiconductor with excellent potential for high-power and ultraviolet optoelectronic device applications. Low thermal conductivity is one of the major obstacles to enable the full performance of ß-Ga2O3-based devices. A promising solution for this problem is to integrate ß-Ga2O3 with a diamond heat sink. However, the thermal properties of the ß-Ga2O3/diamond heterostructures after the interfacial bonding have not been studied extensively, which are influenced by the crystal orientations and interfacial atoms for the ß-Ga2O3 and diamond interfaces. In this work, molecular dynamics simulations based on machine learning potential have been adopted to investigate the crystal-orientation-dependent and interfacial-atom-dependent thermal boundary resistance (TBR) of the ß-Ga2O3/diamond heterostructure after interfacial bonding. The differences in TBR at different interfaces are explained in detail through the explorations of thermal conductivity value, thermal conductivity spectra, vibration density of states, and interfacial structures. Based on the above explorations, a further understanding of the influence of different crystal orientations and interfacial atoms on the ß-Ga2O3/diamond heterostructure was achieved. Finally, insightful optimization strategies have been proposed in the study, which could pave the way for better thermal design and management of ß-Ga2O3/diamond heterostructures according to guidance in the selection of the crystal orientations and interfacial atoms of the ß-Ga2O3 and diamond interfaces.

13.
Transpl Immunol ; 85: 102071, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866187

ABSTRACT

BACKGROUND: To improve liver organ allocation, the model for end-stage liver disease (MELD) score was adopted in candidates reflecting the severity of liver disease and the physical condition of patients. Inflammatory markers are prognostic factors for various cancers and play prognostic roles in patients after liver transplantation (LT) for hepatocellular carcinoma (HCC). Researchers focused more on pre-LT inflammatory markers, while the role of dynamic change of these inflammatory markers is still unknown. The purpose of this study was to estimate the prognostic value of pre-LT and post-LT inflammatory markers. MATERIAL AND METHODS: We collected the pre-LT complete blood count and the post-LT result with highest count of white blood cells within 48 h. Platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio and systemic immune-inflammation index were calculated, and their prognostic roles were analyzed for their MELD scores. RESULTS: This retrospective two-center cohort study enrolled 290 patients after LT for HCC. Multivariate analysis identified pre-LT PLR as independent risk factor for recurrence-free survival (RFS) [HR (95%CI): 1.002 (1.000-1.003), p = 0.023]. A high pre-LT PLR or post-LT PLR were associated with poorer RFS (p < 0.001 and p = 0.004, respectively). Based on the MELD scores, the pre-LT PLR value was able to predict the RFS in high MELD group (p < 0.001) but had no predictive power in low MELD group (p = 0.076). On the contrary, the post-LT PLR value was better to predict the overall RFS value in low MELD group (p = 0.007) but could not predict the overall RFS value in high MELD group (p = 0.136). CONCLUSIONS: Both pre-LT PLR and post-LT PLR demonstrated prognostic value in patients following LT for HCC. Monitoring PLR values based on the MELD score can improve the predictive prognosis and more effectively guide the individual decisions for the postoperative intervention.

14.
Imeta ; 3(3): e191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898985

ABSTRACT

In the era of ubiquitous high-throughput sequencing studies, there is a growing need for analysis tools that are not just performant but also comprehensive and user-friendly enough to cater to both novice and advanced users. This article introduces SeqKit2, the next iteration of the widely used sequence analysis tool SeqKit, featuring expanded functionality, performance optimizations, and support for additional compression methods. Retaining a pragmatic subcommand architecture, SeqKit2 represents substantial enhancement through the inclusion of 19 additional subcommands, expanding its overall repertoire to a total of 38 in eight categories. The new subcommands add functionality such as amplicon processing and robust, error-tolerant parsing of sequence records. In addition, three subcommands designed for real-time analysis are added for periodic monitoring of properties of FASTQ and Binary Alignment/Map alignment records and real-time streaming from multiple sequence files. The performance of SeqKit2 is benchmarked against the old version of SeqKit, Bioawk, Seqtk, and SeqFu tools. SeqKit2 consistently outperforms its predecessor, albeit with marginally higher memory usage, while maintaining competitive runtimes against other tools. With its broad functionality, proven usability, and ongoing development driven by user feedback, we hope that bioinformaticians will find SeqKit2 useful as a "Swiss army knife" of sequence and alignment processing-equally adept at facilitating ad hoc analyses and seamlessly integrating into larger pipelines.

15.
ACS Nano ; 18(23): 15055-15066, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825792

ABSTRACT

The stability issue of Sn-based perovskite solar cells (PSCs) is expected to be resolved by involving a two-dimensional (2D) layered structure. However, Sn-based 2D PSCs, especially Dion-Jacobson (DJ)-phase ones with potentially good stability, have rarely been reported. Herein, superior DJ-phase Sn 2D perovskites with 3-aminobenzylamine (3ABA2+) or 4-aminobenzylamine (4ABA2+) π-conjugated short-chain ligands are reported to fabricate efficient 2D lead-free PSCs. Notably, the high dipole moment of the 3ABAI2 organic spacer is approved to possess faster charge transfer for forming (3ABA)FA4Sn5I16 2D perovskite with an extremely low exciton binding energy (only 84 meV). In combination with a diacetate partial substitution and methylamine iodide/bromide (MAI/MABr) post-treatment strategy to delay crystallization and improve compactness and coverage of the perovskite film, a record power conversion efficiency (PCE) of 6.81% and stability of 840 h (less than 5% degradation in a N2 atmosphere for unencapsulated devices) are acquired in eventual (3ABA)FA4Sn5I16 2D PSCs, which are among the highest PCE and the longest stability of Sn-based 2D PSCs reported to date. Our work provides a prospective molecule design and film preparation strategy of 2D Sn perovskites toward nontoxic high-performance tin-based PSCs, which pushes the almost stagnant research forward.

16.
Sci Rep ; 14(1): 12884, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839838

ABSTRACT

The aim of this study was to develop a real-time risk prediction model for extrauterine growth retardation (EUGR). A total of 2514 very preterm infants were allocated into a training set and an external validation set. The most appropriate independent variables were screened using univariate analysis and Lasso regression with tenfold cross-validation, while the prediction model was designed using binary multivariate logistic regression. A visualization of the risk variables was created using a nomogram, while the calibration plot and receiver operating characteristic (ROC) curves were used to calibrate the prediction model. Clinical efficacy was assessed using the decision curve analysis (DCA) curves. Eight optimal predictors that namely birth weight, small for gestation age (SGA), hypertensive disease complicating pregnancy (HDCP), gestational diabetes mellitus (GDM), multiple births, cumulative duration of fasting, growth velocity and postnatal corticosteroids were introduced into the logistic regression equation to construct the EUGR prediction model. The area under the ROC curve of the training set and the external verification set was 83.1% and 84.6%, respectively. The calibration curve indicate that the model fits well. The DCA curve shows that the risk threshold for clinical application is 0-95% in both set. Introducing Birth weight, SGA, HDCP, GDM, Multiple births, Cumulative duration of fasting, Growth velocity and Postnatal corticosteroids into the nomogram increased its usefulness for predicting EUGR risk in very preterm infants.


Subject(s)
Gestational Age , Infant, Premature , ROC Curve , Humans , Infant, Newborn , Female , Infant, Premature/growth & development , Pregnancy , Male , Nomograms , Birth Weight , Infant, Small for Gestational Age/growth & development , Risk Factors , Diabetes, Gestational/diagnosis , Fetal Growth Retardation/diagnosis , Logistic Models
17.
Nano Lett ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855905

ABSTRACT

Neurotoxins are known for their extreme lethality. However, due to their enormous diversity, effective and broad-spectrum countermeasures are lacking. This study presents a dual-modal cellular nanoparticle (CNP) formulation engineered for continuous neurotoxin neutralization. The formulation involves encapsulating the metabolic enzyme N-sulfotransferase (SxtN) into metal-organic framework (MOF) nanoparticle cores and coating them with a natural neuronal membrane, termed "Neuron-MOF/SxtN-NPs". The resulting nanoparticles combine membrane-enabled broad-spectrum neurotoxin neutralization with enzyme payload-enabled continuous neurotoxin neutralization. The studies confirm the protection of the enzyme payload by the MOF core and validate the continuous neutralization of saxitoxin (STX). In vivo studies conducted using a mouse model of STX intoxication reveal markedly improved survival rates compared with control groups. Furthermore, acute toxicity assessments show no adverse effects associated with the administration of Neuron-MOF/SxtN-NPs in healthy mice. Overall, Neuron-MOF/SxtN-NPs represent a unique biomimetic nanomedicine platform poised to effectively neutralize neurotoxins, marking an important advancement in the field of countermeasure nanomedicine.

18.
Sci Rep ; 14(1): 13167, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849513

ABSTRACT

Exploring the spatial coupling relationship and interaction mechanism between green urbanization (GU) and tourism competitiveness (TC) is of great significance for promoting urban sustainable development. However, the lack of research on the interaction mechanism between GU and TC limits the formulation of effective environmental management policy and urban planning. Taking 734 counties in the Yellow River Basin (YRB) as the study area, this paper analyzes the spatial coupling relationship between GU and TC on the basis of comprehensive evaluation of GU and TC. Then, the interactive mechanism between GU and TC is systematically discussed, and the synergistic development strategy of the two is proposed. The results show that the GU level presents a multicore circle structure, with provincial capitals, prefecture-level urban districts and economically developed counties in east-central regions as high-value centers. The TC at county scale presents a multi-center spatial structure. Additionally, there is a significant positive spatial coupling between GU and TC in the YRB. The analysis further reveals that green urbanization level, social progress, population development, infrastructure construction, economic development quality, and eco-environmental protection has a observably influence on TC. Tourism competitiveness, service competitiveness, location competitiveness, resource competitiveness, market competitiveness, environmental influence, and talent competitiveness has a observably influence on GU. TC can promote GU, and the improvement of green urbanization level can support the development of tourism competitiveness. According to the spatial zoning method, 734 counties are divided into 6 categories, and the coordinated development strategy of GU and TC for each type of district is proposed.

19.
Adv Sci (Weinh) ; : e2404172, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874481

ABSTRACT

Smart drug platforms based on spatiotemporally controlled release and integration of tumor imaging are expected to overcome the inefficiency and uncertainty of traditional theranostic modes. In this study, a composite consisting of a thermosensitive hydrogel (polyvinyl alcohol-carboxylic acid hydrogel (PCF)) and a multifunctional nanoparticle (Fe3O4@Au/Mn(Zn)-4-carboxyphenyl porphyrin/polydopamine (FAMxP)) is developed to combine tumor immunogenic cell death (ICD)/immune checkpoint blockade (ICB) therapy under the guidance of magnetic resonance imaging (MRI) and fluorescence imaging (FI). It can not only further recognize the target cells through the folate receptor of tumor cells, but also produce thermal dissolution after exposure to near-infrared light to slowly release FAMxP in situ, thereby prolonging the treatment time and avoiding tumor recurrence. As FAMxP entered the tumor cells, it released FAMx in a pH-dependent manner. Chemodynamic, photothermal and photodynamic therapy can cause significant ICD in cancer cells. ICB can thus be further enhanced by injecting anti-programmed cell death ligand 1, improving the effectiveness of tumor treatment. The developed PCF-FAMxP composite hydrogel may represent an updated drug design approach with simple compositions for cooperative MRI/FI-guided targeted therapeutic pathways for tumors.

20.
Sci Robot ; 9(91): eadl2007, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924422

ABSTRACT

Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.


Subject(s)
Colon , Cytokines , Inflammatory Bowel Diseases , Nanoparticles , Robotics , Animals , Cytokines/metabolism , Inflammatory Bowel Diseases/metabolism , Robotics/instrumentation , Mice , Humans , Macrophages/metabolism , Intestinal Mucosa/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Male , Equipment Design , Epithelium
SELECTION OF CITATIONS
SEARCH DETAIL
...