Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 12(14): 6339-6362, 2022.
Article in English | MEDLINE | ID: mdl-36168618

ABSTRACT

Rationale: Cutaneous melanoma is the most aggressive and deadliest of all skin malignancies. Complete primary tumor removal augmented by advanced imaging tools and effective post-operative treatment is critical in the prevention of tumor recurrence and future metastases formation. Methods: To meet this challenge, we designed novel polymeric imaging and therapeutic systems, implemented in a two-step theranostic approach. Both are composed of the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The first system is a novel, fluorescent, Turn-ON diagnostic probe evaluated for the precise excision of the primary tumor during image-guided surgery (IGS). The fluorescence activation of the probe occurs via PGA degradation by tumor-overexpressed cathepsins that leads to the separation of closely-packed, quenched FRET pair. This results in the emission of a strong fluorescence signal enabling the delineation of the tumor boundaries. Second, therapeutic step is aimed to prevent metastases formation with minimal side effects and maximal efficacy. To that end, a targeted treatment containing a BRAF (Dabrafenib - mDBF)/MEK (Selumetinib - SLM) inhibitors combined on one polymeric platform (PGA-SLM-mDBF) was evaluated for its anti-metastatic, preventive activity in combination with immune checkpoint inhibitors (ICPi) αPD1 and αCTLA4. Results: IGS in melanoma-bearing mice led to a high tumor-to-background ratio and reduced tumor recurrence in comparison with mice that underwent surgery under white light (23% versus 33%, respectively). Adjuvant therapy with PGA-SLM-mDBF combined with ICPi, was well-tolerated and resulted in prolonged survival and prevention of peritoneal and brain metastases formation in BRAF-mutated melanoma-bearing mice. Conclusions: The results reveal the great clinical potential of our PGA-based nanosystems as a tool for holistic melanoma treatment management.


Subject(s)
Melanoma , Skin Neoplasms , Surgery, Computer-Assisted , Animals , Mice , Cathepsins , Glutamic Acid , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Mitogen-Activated Protein Kinase Kinases , Nanoconjugates , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/prevention & control , Polyglutamic Acid/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf , Skin Neoplasms/pathology
2.
Adv Ther (Weinh) ; 3(8)2020 Aug.
Article in English | MEDLINE | ID: mdl-35754977

ABSTRACT

Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.

SELECTION OF CITATIONS
SEARCH DETAIL
...