Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38883782

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

2.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712286

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

3.
Mol Cancer Ther ; 21(2): 271-281, 2022 02.
Article in English | MEDLINE | ID: mdl-34815360

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive and when metastatic is often drug-resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for patients with TNBC. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models, including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models with the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Glycosaminoglycans/therapeutic use , Humans , Precision Medicine , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
PNAS Nexus ; 1(5): pgac232, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712364

ABSTRACT

Triple negative breast cancer (TNBC) accounts for over 30% of all breast cancer (BC)-related deaths, despite accounting for only 10% to 15% of total BC cases. Targeted therapy development has largely stalled in TNBC, underlined by a lack of traditionally druggable addictions like receptor tyrosine kinases (RTKs). Here, through full genome CRISPR/Cas9 screening of TNBC models, we have uncovered the sensitivity of TNBCs to the depletion of the ubiquitin-like modifier activating enzyme 1 (UBA1). Targeting UBA1 with the first-in-class UBA1 inhibitor TAK-243 induced unresolvable endoplasmic reticulum (ER)-stress and activating transcription factor 4 (ATF4)-mediated upregulation of proapoptotic NOXA, leading to cell death. c-MYC expression correlates with TAK-243 sensitivity and cooperates with TAK-243 to induce a stress response and cell death. Importantly, there was an order of magnitude greater sensitivity of TNBC lines to TAK-243 compared to normal tissue-derived cells. In five patient derived xenograft models (PDXs) of TNBC, TAK-243 therapy led to tumor inhibition or frank tumor regression. Moreover, in an intracardiac metastatic model of TNBC, TAK-243 markedly reduced metastatic burden, indicating UBA1 is a potential new target in TNBC expressing high levels of c-MYC.

5.
Mol Cancer Ther ; 20(10): 1868-1879, 2021 10.
Article in English | MEDLINE | ID: mdl-34315769

ABSTRACT

The EWSR1-FLI1 t(11;22)(q24;q12) translocation is the hallmark genomic alteration of Ewing sarcoma, a malignancy of the bone and surrounding tissue, predominantly affecting children and adolescents. Although significant progress has been made for the treatment of localized disease, patients with metastasis or who relapse after chemotherapy have less than a 30% five-year survival rate. EWS-FLI1 is currently not clinically druggable, driving the need for more effective targeted therapies. Treatment with the H3K27 demethylase inhibitor, GSK-J4, leads to an increase in H3K27me and a decrease in H3K27ac, a significant event in Ewing sarcoma because H3K27ac associates strongly with EWS-FLI1 binding at enhancers and promoters and subsequent activity of EWS-FLI1 target genes. We were able to identify targets of EWS-FLI1 tumorigenesis directly inhibited by GSK-J4. GSK-J4 disruption of EWS-FLI1-driven transcription was toxic to Ewing sarcoma cells and slowed tumor growth in patient-derived xenografts (PDX) of Ewing sarcoma. Responses were markedly exacerbated by cotreatment with a disruptor of RNA polymerase II activity, the CDK7 inhibitor THZ1. This combination together suppressed EWS-FLI1 target genes and viability of ex vivo PDX Ewing sarcoma cells in a synergistic manner. In PDX models of Ewing Sarcoma, the combination shrank tumors. We present a new therapeutic strategy to treat Ewing sarcoma by decreasing H3K27ac at EWS-FLI1-driven transcripts, exacerbated by blocking phosphorylation of the C-terminal domain of RNA polymerase II to further hinder the EWS-FLI1-driven transcriptome.


Subject(s)
Benzazepines/pharmacology , DNA-Directed RNA Polymerases/antagonists & inhibitors , Histones/antagonists & inhibitors , Oncogene Proteins, Fusion/antagonists & inhibitors , Phenylenediamines/pharmacology , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Pyrimidines/pharmacology , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Transcriptome , Animals , Apoptosis , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Cancer Res ; 81(7): 1896-1908, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33483374

ABSTRACT

MYCN is amplified in 20% to 25% of neuroblastoma, and MYCN-amplified neuroblastoma contributes to a large percent of pediatric cancer-related deaths. Therapy improvements for this subtype of cancer are a high priority. Here we uncover a MYCN-dependent therapeutic vulnerability in neuroblastoma. Namely, amplified MYCN rewires the cell through expression of key receptors, ultimately enhancing iron influx through increased expression of the iron import transferrin receptor 1. Accumulating iron causes reactive oxygen species (ROS) production, and MYCN-amplified neuroblastomas show enhanced reliance on the system Xc- cystine/glutamate antiporter for ROS detoxification through increased transcription of this receptor. This dependence creates a marked vulnerability to targeting the system Xc-/glutathione (GSH) pathway with ferroptosis inducers. This reliance can be exploited through therapy with FDA-approved rheumatoid arthritis drugs sulfasalazine (SAS) and auranofin: in MYCN-amplified, patient-derived xenograft models, both therapies blocked growth and induced ferroptosis. SAS and auranofin activity was largely mitigated by the ferroptosis inhibitor ferrostatin-1, antioxidants like N-acetyl-L-cysteine, or by the iron scavenger deferoxamine (DFO). DFO reduced auranofin-induced ROS, further linking increased iron capture in MYCN-amplified neuroblastoma to a therapeutic vulnerability to ROS-inducing drugs. These data uncover an oncogene vulnerability to ferroptosis caused by increased iron accumulation and subsequent reliance on the system Xc-/GSH pathway. SIGNIFICANCE: This study shows how MYCN increases intracellular iron levels and subsequent GSH pathway activity and demonstrates the antitumor activity of FDA-approved SAS and auranofin in patient-derived xenograft models of MYCN-amplified neuroblastoma.


Subject(s)
Iron/pharmacology , Neuroblastoma/drug therapy , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Auranofin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Amplification , Gene Expression Regulation, Enzymologic/physiology , Glutathione/metabolism , Humans , Iron/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxazoles/pharmacology , Oxazoles/therapeutic use , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Sulfasalazine/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...