Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 21(6): 521-30, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21767317

ABSTRACT

UNLABELLED: In the present study, we modified an existing surface wipe sampling method for lead and other heavy metals to create a protocol to collect fungi in floor dust followed by real-time quantitative PCR (qPCR)-based detection. We desired minimal inconvenience for participants in residential indoor environmental quality and health studies. Accuracy, precision, and method detection limits (MDLs) were investigated. Overall, MDLs ranged from 0.6 to 25 cell/cm² on sampled floors. Overall measurement precisions expressed as the coefficient of variation because of sample processing and qPCR ranged 6-63%. Median and maximum fungal concentrations in house dust in study homes in Visalia, Tulare County, California, were 110 and 2500 cell/cm², respectively, with universal fungal primers (allergenic and nonallergenic species). The field study indicated samplings in multiple seasons were necessary to characterize representative whole-year fungal concentrations in residential microenvironments. This was because significant temporal variations were observed within study homes. Combined field and laboratory results suggested this modified new wipe sampling method, in conjunction with growth-independent qPCR, shows potential to improve human exposure and health studies for fungal pathogens and allergens in dust in homes of susceptible, vulnerable population subgroups. PRACTICAL IMPLICATIONS: Fungi are ubiquitous in indoor and outdoor environments, and many fungi are known to cause allergic reactions and exacerbate asthma attacks. This study established--by modifying an existing--a wipe sampling method to collect fungi in floor dust followed by real-time quantitative PCR (qPCR)-based detection methodologies. Results from this combined laboratory and field assessment suggested the methodology's potential to inform larger human exposure studies for fungal pathogens and allergens in house dust as well as epidemiologic studies of children with asthma and older adults with chronic respiratory diseases.


Subject(s)
Air Pollution, Indoor/analysis , Allergens/analysis , Dust/analysis , Floors and Floorcoverings , Fungi/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Adult , Air Microbiology , Asthma/epidemiology , Asthma/etiology , Asthma/genetics , California/epidemiology , Female , Fungi/classification , Humans , Humidity , Hypersensitivity/epidemiology , Hypersensitivity/etiology , Hypersensitivity/genetics , Male , Risk Assessment/methods , Seasons
2.
Indoor Air ; 20(1): 85-90, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19874401

ABSTRACT

UNLABELLED: We report approximately 500 indoor-outdoor air exchange rate (AER) calculations based on measurements conducted in residences in three US metropolitan areas in 1999-2001: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Overall, a median AER across these urban areas and seasons was 0.71 air changes per hour (ACH, or per hour; n = 509) while median AERs measured in California (n = 182), New Jersey (n = 163), and Texas (n = 164) were 0.87, 0.88, and 0.47 ACH, respectively. In Texas, the measured AERs were lower in the summer cooling season (median = 0.37 ACH) than in the winter heating season (median = 0.63 ACH), likely because of the reported use of room air conditioners as Houston is typically hot and humid during the summer. The measured AERs in California were higher in summer (median = 1.13 ACH) than in winter (median = 0.61 ACH). Because the summer cooling season in Los Angeles County is less humid than in New Jersey or Texas, natural ventilation through open windows and screened doors likely increased measured AER in California study homes. In New Jersey, AER were similar across heating and cooling seasons, although the median AER was relatively lower during the spring. PRACTICAL IMPLICATIONS: Adequate ventilation or air exchange rate (AER) for an indoor environment is important for human health and comfort, and relevant to building design and energy conservation and efficiency considerations. However, residential AER data, especially measured by more accurate non-toxic tracer gas methodologies, are at present quite limited worldwide, and are insufficient to represent the variations across regions and seasons within and between homes, including apartments and condominiums in more densely populated urban areas. The present paper presents quantitative and qualitative data to characterize residential AERs in three US urban areas with different climate attributes.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Urban Population , Ventilation , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Humans , Seasons , United States
3.
Indoor Air ; 14(5): 333-41, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15330793

ABSTRACT

UNLABELLED: Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. PRACTICAL IMPLICATIONS: This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.


Subject(s)
Absenteeism , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Schools , Air Pollutants/analysis , Analysis of Variance , Child , Child, Preschool , Female , Humans , Idaho , Male , Students , Ventilation , Washington
4.
Indoor Air ; 14(3): 154-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15104781

ABSTRACT

UNLABELLED: The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. PRACTICAL IMPLICATIONS: Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.


Subject(s)
Air Pollution, Indoor/analysis , Schools , Ventilation , Air Conditioning , Child , Environmental Monitoring , Fluorocarbons/analysis , Humans , Humidity , Los Angeles , Temperature
5.
Indoor Air ; 14 Suppl 8: 135-44, 2004.
Article in English | MEDLINE | ID: mdl-15663469

ABSTRACT

UNLABELLED: Our objective was to develop a process for selecting interior finish materials having low impacts with respect to emissions of toxic and odorous volatile organic compounds (VOCs) for school relocatable classrooms (RCs). A laboratory study identified alternate materials with low VOC emissions. Two pairs of RCs then were constructed. One RC per pair contained standard interior materials; the other incorporated alternate materials. The pairs were sited side-by-side at two California elementary schools in fall 2001. Fifteen target VOCs, including the toxicants formaldehyde, acetaldehyde, vinyl acetate, phenol, toluene, and naphthalene, were measured during school hours over 8 weeks in the succeeding fall cooling season. Indoor minus outdoor VOC concentrations with an advanced HVAC operated were low; only formaldehyde concentrations exceeded 5 p.p.b. Classroom VOC concentrations were predicted based on emission factors (microg/m(2)/h), material quantities and design ventilation rates. These were compared to average adjusted concentrations measured when the occupied classrooms were operating at near the code-minimum ventilation rate. For 16 of the possible 42 comparisons, measured concentrations agreed within a factor of two of predicted the predicted values. Concentrations of six of 10 VOCs were significantly lower in modified RCs though average differences were mostly less than 1 p.p.b. PRACTICAL IMPLICATIONS: Laboratory-based material testing combined with modeling and field validation to select low VOC-impact interior finish materials helped achieve the aim of providing generally acceptable air quality in new school relocatable classrooms (RCs). The accuracy of the combined process was evidenced by the correct prediction of air quality impacts, though small, due to material VOC emissions when the study RCs were ventilated at code-minimum requirements. The process could be generalized to other manufacturers and classroom types. Material selection also is important to accommodate reduced ventilation rate conditions, which likely occur in many classrooms.


Subject(s)
Air Pollution, Indoor/analysis , Construction Materials , Models, Theoretical , Schools , Child , Forecasting , Humans , Materials Testing , Odorants , Organic Chemicals , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...