Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 2(2): 96-101, 2002 May.
Article in English | MEDLINE | ID: mdl-15100841

ABSTRACT

The serviceability of microfluidics-based instrumentation including 'lab-on-a-chip' systems critically depends on control of fluid motion. We are reporting here an alternative approach to microfluidics based upon the micromanipulation of discrete droplets of aqueous electrolyte by electrowetting. Using a simple open structure, consisting of two sets of opposing planar electrodes fabricated on glass substrates, positional and formational control of microdroplets ranging in size from several nanoliters to several microliters has been demonstrated at voltages between 15-100 V. Since there are no permanent channels or structures between the plates, the system is highly flexible and reconfigurable. Droplet transport is rapid and efficient with average velocities exceeding 10 cm s(-1) having been observed. The dependence of the velocity on voltage is roughly independent of the droplet size within certain limits, thus the smallest droplets studied (approximately 3 nl) could be transported over 1000 times their length per second. Formation, mixing, and splitting of microdroplets was also demonstrated using the same microactuator structures. Thus, electrowetting provides a means to achieve high levels of functional integration and flexibility for microfluidic systems.

2.
Biophys J ; 72(5): 2382-9, 1997 May.
Article in English | MEDLINE | ID: mdl-9129842

ABSTRACT

Previous biophysical models of ameboid crawling have described cell movement in terms of a persistent random walk. Speed and orientation were treated in the latter model as independent and temporally homogeneous stochastic processes. We show here that, at least in the case of Dictyostelium discoideum, both speed control and reorientation processes involve a deterministic, periodic component. We also show that the processes are synchronized and negatively correlated, as was suggested by earlier findings. That is, increased turning correlates with periods of slow movement. Therefore, previous models are inconsistent with the behavior of cells. Using a heuristic approach, we have developed a mathematical model that describes the statistical properties of the cell's velocity and movement of its centroid. Our observations and the model are consistent with the phenomenological description of ameboid motility as a cyclic process of pseudopod extension and retraction.


Subject(s)
Cell Movement/physiology , Models, Biological , Periodicity , Amoeba/physiology , Animals , Dictyostelium/physiology , Pseudopodia , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...