Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 123(17): 10750-10807, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37581572

ABSTRACT

In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.

2.
Adv Mater ; 35(30): e2205346, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36807321

ABSTRACT

The importance of catalysts today as workhorses in most modern industrial fields cannot be downplayed. As a result, rational design and engineering of targeted catalysts have emerged as key objectives and are dependent on in-depth understanding of complex catalytic dynamics. Synchrotron radiation (SR) light sources with rich advanced experimental methods are being recognized as a comprehensive characterization platform, which can draw a full picture on such multiparameter-involved catalysis under actual working conditions. Herein, the recent progress of catalytic dynamics process studied by the means of various SR techniques is summarized. In particular, SR-based spectroscopic, scattering, and imaging investigations on true catalysts are first introduced with the potential of in situ and operando characterizations. Apparently, the limitations from single SR technique naturally prompt a simple combination of SR techniques to better understand the whole catalysis process. Moreover, the discrepancies among various online testing facilities and batches of samples, along with random/systematic errors introduced by traditional intermittent/asynchronous measurement make it imperative to develop more prolific systems, complementary of multiple SR techniques for deep probing of dynamic catalytic processes. It is believed that the booming new light sources can further enrich the current multiple SR techniques, and thus may realize the true visualization on future catalytic dynamic processes.

3.
J Phys Chem Lett ; 12(47): 11543-11554, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34806392

ABSTRACT

Electrocatalysis is recognized as a significant process for energy conversion. In fact, numerous factors, including the variable electronic structure of electrocatalysts, rich intermediates, and mutable active phases, have important but complex influences on the catalytic process. In addition, the support of electrocatalysts is considered as one of key factors that correlate to the final catalytic performance. In this Perspective, some recent advances regarding the support effects in electrocatalysis are briefly summarized. Synchrotron radiation-based characterizations are introduced to reveal the support-induced modulation in electrocatalysts. Recent in situ/operando studies are emphasized for better understanding of the real interaction between catalysts and support, together with visualizing the dynamic catalytic process. Some perspectives are proposed that may accelerate more attention being given to the support's optimization for future practical applications.


Subject(s)
Electrochemical Techniques/methods , Synchrotrons , Catalysis
4.
Sci Bull (Beijing) ; 66(6): 553-561, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-36654425

ABSTRACT

Broadly, the oxygen evolution reaction (OER) has been deeply understood as a significant part of energy conversion and storage. Nevertheless, the anions in the OER catalysts have been neglected for various reasons such as inactive sites, dissolution, and oxidation, amongst others. Herein, we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap. The advanced operando synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy, synchrotron radiation photoelectron spectroscopy (SRPES) depth detection and differential X-ray absorption fine structure (Δ-XAFS) spectrum jointly point out that some oxidized sulfur species (SO42-) will self-optimize new Ni-S bonds during OER process. Such amazing anionic self-optimization (ASO) behavior has never been observed in the OER process. Subsequently, the optimization-derived component shows a significantly improved electrocatalytic performance (activity, stability, etc.) compared to reference catalyst Ni(OH)2. Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst, and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER, respectively. This work demonstrates the vital role of anions in the electrochemical process, which will open up new perspectives for understanding OER and provide some new ideas in related fields (especially catalysis and chemistry).

SELECTION OF CITATIONS
SEARCH DETAIL
...