Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591369

ABSTRACT

Copper smelting slag discharged from mining and high-aluminum fly ash generated during the combustion of coal for energy production are two typical bulk solid wastes, which are necessary to carry out harmless and resourceful treatment. This research proposed an eco-friendly and economical method for the co-consumption of copper smelting slag and high-aluminum fly ash. Cementitious materials were compounded with copper smelting slag and high-aluminum fly ash as the main materials were successfully prepared, with a 28-d compressive strength up to 31.22 MPa, and the heavy metal leaching toxicity was below the limits of the relevant standards. The optimum mechanical properties of the cementitious materials were obtained by altering the material proportion, ball mill rotation speed, and CaO dosage. Under the combined effect of mechanical ball milling at a suitable speed and chemical activation with a certain alkali concentration, the prepared cementitious materials had an initial activation. The pastes of the cementitious materials generated a gel system during the subsequent hydration process. The two steps together improved the mechanical strength of the cured products. The preparation was simple to operate and offered a high stability of heavy metals. The heavy metal contaminants were kept at a low content throughout the process from raw materials to the prepared cured specimens, which was suitable for application in practical environmental remediation projects and could provide effective solutions for ecological environment construction.

2.
Environ Sci Technol ; 54(16): 10279-10288, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32702240

ABSTRACT

Dissolved silicate is an important background constituent of natural waters, but there is little clarity regarding the effect of silicate on the oxidizing capability of permanganate (Mn(VII)) and on its efficiency for remediation applications. In the present study, we found that dissolved silicate, metasilicate or disilicate (DS), could significantly promote the oxidation of 2,4-dichlorophenol (2,4-DCP) by Mn(VII), and the extent of the promoting effect was even more evident than that of pyrophosphate (PP). The experiments showed that, unlike PP, DS was not capable of coordinating with Mn(III) ions, and the promoting effect of DS was not due to the oxidizing capability of complexed Mn(III). Instead, DS ions, as a weak base, could combine with the hydroxyl groups of MnO2 via hydrogen bonding to limit the growth of colloidal MnO2 particles. The DS-stabilized colloidal MnO2 particles, with hydrodynamic diameters less than 100 nm, could act as catalysts to enhance the oxidation of 2,4-DCP by Mn(VII). The best promoting effect of DS on the performance of Mn(VII) oxidant was achieved at the initial solution pH of 7, and the coexisting bicarbonate ions further improved the oxidation of 2,4-DCP in the Mn(VII)/DS system. Sand column experiments showed that the combined use of Mn(VII) and DS additive could mitigate the problem of permeability reduction of sand associated with the retention of MnO2 particles. This study not only deepens our understanding on the role of dissolved silicate in a Mn(VII) oxidation process but also provides an effective and green method to enhance the oxidizing capacity of Mn(VII)-based treatment systems.


Subject(s)
Chlorophenols , Manganese Compounds , Colloids , Oxidation-Reduction , Oxides , Silicates
SELECTION OF CITATIONS
SEARCH DETAIL
...