Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 21771-21781, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634381

ABSTRACT

For the next generation of lithium-ion batteries (LIBs), it is primary to seek high capacity and long-lifetime electrode materials. Li-excess disordered rock-salt structure (DRS) cathodes have gained much attention due to their high specific capacity. However, Li-excess can lead to a decrease in the structural stability of an electrode material. A new Li-rich DRS oxyfluorides, Li1.23Ni0.3Nb0.3Fe0.16O0.85F0.15 (F0.15) with a series amounts of LiNbOx (LN) coating (0, 5, 10, and 15 wt % denoted as F0.15-LN0, F0.15-LN5, F0.15-LN10, and F0.15-LN15, respectively), are successfully synthesized and evaluated as cathode materials in LIBs. Among them, F0.15-LN10 exhibits the highest initial discharge specific capacity of 296.1 mAh g-1 (at a current density of 20 mA g-1) with the capacity retention rate of 14% higher than that of the uncoated F0.15 after 80 cycles. Even at 300 mA g-1, F0.15-LN10 still delivers the highest discharge specific capacity of 130 mAh g-1. After 20 cycles, the charge-transfer impedance of F0.15-LN10 remained the smallest. The characterizations indicate that LN coating reduces the surface polarization of the cathode materials, slows the interfacial side reactions between the electrolyte and the electrode, and speeds up the Li+ diffusion. These results demonstrate that LN coating is an effective strategy to improve the electrochemical performance.

2.
Nanoscale Horiz ; 8(4): 473-482, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36786825

ABSTRACT

MoS2 in a graphene-like structure that possesses a large interlayer spacing is a promising anode material for sodium ion batteries (SIBs). However, its poor cycling stability and bad rate performance limit its wide application. In this work, we synthesized an N-doped rGO/MoS2 (ISE, interlayer spacing enlarged) composite based on an innovative strategy to serve as an anode material for SIBs. By inserting NH4+ into the interlayer of MoS2, the interlayer spacing of MoS2 was successfully expanded to 0.98 nm. Further use of N plasma treatment achieved the doping of N element. The results show that N-rGO/MoS2(ISE) exhibits a high specific capacity of 542 mA h g-1 after 300 cycles at 200 mA g-1. It is worth mentioning that the capacity retention rate reaches an ultra-large percentage of 97.13%, and the average decline percentage per cycle is close to 0.01%. Moreover, it also presents an excellent rate performance (477, 432, 377, 334 mA h g-1 at 200, 500, 1000, 2000 m A g-1 respectively). This work reveals a unique approach to fabricating promising anode materials and the electrochemical reaction mechanism for SIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...