Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Oncol ; 15(1): 161, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739205

ABSTRACT

The incidence and mortality of cancer is ever-increasing, which poses a significant challengesto human health and a substantial economic burden to patients. At present, chemotherapy is still a primary treatment for various cancers. However, chemotherapy kills tumors but also induces the related side effects, whichadversely impacting patient quality of life and exacerbating suffering. Therefore, there is an urgent need for new and effective treatments that can control tumor growth while reducing the side effects for patients. Arterial chemoembolization has been attracted much attentionwhich attributed to the advantage of ability to embolize tumor vessels to block blood and nutrition supplies. Thus, to achieve local tumor control, it has become an effective means of local tumor control and has been widely used in clinical practice. Despite its efficacy, conventional arterial chemoembolization techniques, limited by embolization materials, have been associated with incomplete embolization and suboptimal drug delivery outcomes. Gradually, researchers have shifted their attention to a new type of embolic material called CalliSperes® drug-eluting embolic bead (DEB). DEB can not only load high doses of drugs, but also has strong sustained drug release ability and good biocompatibility. The integration of DEBs with traditional arterial chemoembolization (DEB-TACE) promises targeted vascular embolization, mitigated tumor ischemia and hypoxia, and direct intravascular chemotherapy delivery. It can prevent cancer cell differentiation and accelerate their death, meanwhile, directly injecting chemotherapy drugs into the target blood vessels reduced the blood concentration of the whole body, thus reduced the toxic and side effects of chemotherapy. Furthermore, DEB-TACE's sustained drug release capability elevates local drug concentrations at the tumor site, amplifying its antitumor efficacy. Therefore, DEB-TACE has become a hot spot in clinical research worldwide. This review introduces the pathogenesis of solid tumors, the background of research and biological characteristics of DEB, and the action mechanism of DEB-TACE, as well as its clinical research in various solid tumors and future prospects. This review aims to provide new ideas for the treatment of DEB-TACE in various solid tumors.

2.
Environ Technol ; 42(9): 1452-1460, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31539312

ABSTRACT

Biofilms play an important role in degradation, transformation and assimilation of anthropogenic pollutants in aquatic ecosystems. In this study, we assembled a tubular bioreactor containing a biofilm substrate and aeration device, which was introduced into mesocosms to explore the effects of bioreactor on physicochemical and microbial characteristics of a hypereutrophic urban river. The biofilm bioreactor greatly improved water quality, especially by decreasing dissolved inorganic nitrogen (DIN) concentrations, suggesting that biofilms were the major sites of nitrification and denitrification with an oxygen concentration gradient. The biofilm bioreactor increased the abundance of planktonic bacteria, whereas diversity of the planktonic microbial community decreased. Sequencing revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria were the four predominant phyla in the planktonic microbial community, and the presence of the biofilm bioreactor increased the relative abundance of Proteobacteria. Variations in microbial communities were most strongly affected by the presence of the biofilm bioreactor, as indicated by principal component analysis (PCA) and redundancy analysis (RDA). This study provides valuable insights into changes in ecological characteristics associated with self-purification processes in hypereutrophic urban rivers, and may be of important for the application of biofilm bioreactor in natural urban river.


Subject(s)
Microbiota , Rivers , Biofilms , Bioreactors , Water Quality
3.
AMB Express ; 8(1): 22, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29453676

ABSTRACT

Bacterial communities of biofilms growing on artificial substrates were examined at two time periods (7 and 14 days) and two locations (lentic and lotic areas) in a hypereutrophic urban river of eastern China. Previous studies in this river network indicated that variations of microbial communities were the major factor affecting the distribution of antibiotic resistant genes highlighting the importance of understanding controls of microbial communities. Bacterial communities associated with biofilms were determined using epifluorescence microscopy and high-throughput sequencing. Results showed that sampling time and site had significant effects on the abundances of surface-associated bacteria. No significant differences were found in the number of surface-associated bacteria between two substrate types (filament vs. slide). Sequencing revealed microbial communities attached to artificial substrates in a hypereutrophic urban river were composed of 80,375 OTUs, and distributed in 47 phyla. Proteobacteria and Cyanobacteria/Chloroplast were the two dominant phyla, followed by Planctomycetes, Actinobacteria, Verrucomicrobia, Firmicutes and Bacteroidetes. Taxonomic composition showed ammonia-oxidizing microorganisms, fecal indicator bacteria and pathogens enriched in attached microbial communities, especially the ammonia-oxidizing Nitrosomonas bacteria. These results indicated that there were significant temporal and intra-river heterogeneity of attached microbial community structure, but no significant difference in community composition was detected between the two substrate types.

SELECTION OF CITATIONS
SEARCH DETAIL
...