Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Biomed Pharmacother ; 177: 117065, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971010

ABSTRACT

Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.

2.
Drug Dev Res ; 85(5): e22235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021343

ABSTRACT

RIPK1 plays a key role in necroptosis and is associated with various inflammatory diseases. Using structure-based virtual screening, a novel hit with 5-(1-benzyl-1H-imidazol-4-yl)-1,2,4-oxadiazole scaffold was identified as an RIPK1 inhibitor with an IC50 value of 1.3 µM. Further structure-activity relationship study was performed based on similarity research and biological evaluation. The molecular dynamics simulation of compound 2 with RIPK1 indicated that it may act as a type II kinase inhibitor. This study provides a highly efficient way to discover novel scaffold RIPK1 inhibitors for further development.


Subject(s)
Molecular Dynamics Simulation , Oxadiazoles , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Structure-Activity Relationship , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Docking Simulation , Imidazoles/pharmacology , Imidazoles/chemistry , Drug Evaluation, Preclinical , Drug Discovery/methods
3.
Theranostics ; 14(8): 3104-3126, 2024.
Article in English | MEDLINE | ID: mdl-38855191

ABSTRACT

Background: The stem or progenitor antecedents confer developmental plasticity and unique cell identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific therapeutic targets is still absent. Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of identified immune and stromal cell subpopulations were validated by immunohistochemistry in our cohort. Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor (LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy (NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel immune and stromal cell subpopulations of breast cancer identified in our study could be potential therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and therapeutic stratification of breast cancer.


Subject(s)
Breast Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Prognosis
4.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924578

ABSTRACT

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

5.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38886059

ABSTRACT

Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.


Subject(s)
Anxiety , Neural Pathways , Prefrontal Cortex , Stress, Psychological , Animals , Anxiety/psychology , Anxiety/physiopathology , Male , Stress, Psychological/psychology , Stress, Psychological/physiopathology , Prefrontal Cortex/physiopathology , Neural Pathways/physiopathology , Neural Pathways/physiology , Mice , Fear/physiology , Fear/psychology , Mice, Inbred C57BL , Ventral Tegmental Area/physiopathology , Thalamus/physiopathology , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/physiopathology
6.
Sci Total Environ ; 931: 172862, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705286

ABSTRACT

Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.


Subject(s)
Agriculture , Fertilizers , Soil Microbiology , Soil , Fertilizers/analysis , Soil/chemistry , Agriculture/methods , Bacteria/classification , Fungi , Oryza , Ecosystem , Microbiota/drug effects , Archaea
7.
Fitoterapia ; 175: 105940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565382

ABSTRACT

This study aims to clarify the specific anti-fatigue components of Schizophyllum commune (S.commune) and analyze its potential anti-fatigue mechanism. The main anti-fatigue active ingredient of S.commune was locked in n-butanol extract (SPE-n) by activity evaluation. Twelve compounds were identified by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). The anti-fatigue effect of morusin is the most predominant among these 12 ingredients. The determination of biochemical indices showed that morusin could increase liver glycogen reserves, improve the activity of antioxidant enzymes in liver, and reduce reactive oxygen species (ROS) content in muscle tissue, thereby reducing myocyte damage. Further studies revealed that morusin could reduce the level of oxidative stress by activating Nrf2/HO-1 pathway, thus alleviating the fatigue of mice caused by exhaustive exercise. The current findings provide a theoretical basis for the development of natural anti-fatigue functional food.


Subject(s)
Fatigue , Schizophyllum , Animals , Mice , Fatigue/drug therapy , Male , Oxidative Stress/drug effects , Liver/drug effects , Molecular Structure , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Antioxidants/isolation & purification , Heme Oxygenase-1/metabolism , Muscle, Skeletal , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Tandem Mass Spectrometry , Membrane Proteins , Animals, Outbred Strains
8.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38464291

ABSTRACT

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

9.
Front Endocrinol (Lausanne) ; 15: 1323994, 2024.
Article in English | MEDLINE | ID: mdl-38405150

ABSTRACT

Background: Thyroid autoimmunity is one of the most prevalent autoimmune diseases. However, its association with extra-thyroid diseases and mortality risk in the general population remains uncertain. Our study aims to evaluate the association of thyroid autoimmunity with extra-thyroid disease and the risk of mortality. Methods: A prospective cohort study was conducted using data from the National Health and Nutrition Examination Survey (NHANES) with participants from 2007-2008, 2009-2010, and 2011-2012, tracking their mortality until 2019. Associations between thyroid autoimmunity, which was defined as having positive thyroid peroxidase antibody (TPOAb) and/or thyroglobulin antibody (TgAb), and extra-thyroid disease including diabetes, hypertension, cardiovascular disease, chronic lung disease, arthritis, cancer and chronic renal disease and the risk of mortality were investigated. Results: A total of 7431 participants were included in this study. Positive The prevalence of positive TgAb was 7.54%, and positive TPOAb prevalence was 11.48%. TgAb was significantly associated with diabetes (Model 1: OR=1.64, 95% CI:1.08-2.50; Model 2: OR=1.93, 95% CI: 1.21-3.08) and hypertension (Model 1: OR=0.67, 95% CI: 0.49-0.91; Model 2: OR=0.62, 95% CI: 0.44-0.88). TPOAb was associated with a lower prevalence of chronic lung disease (model 1: OR=0.71, 95% CI: 0.54-0.95; model 2: OR=0.71, 95% CI: 0.53-0.95). No associations were observed between TgAb, TPOAb and other extra-thyroid diseases. Neither TgAb nor TPOAb were associated with all-cause mortality or heart disease mortality. Conclusion: TgAb was linked to a higher prevalence of diabetes and a lower prevalence of hypertension, while TPOAb was associated with a decreased prevalence of chronic lung disease. However, neither TgAb nor TPOAb posed a risk for all-cause mortality or heart disease mortality.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus , Heart Diseases , Hypertension , Lung Diseases , Thyroid Diseases , Adult , Humans , Autoimmunity , Nutrition Surveys , Prospective Studies , Iodide Peroxidase , Thyroid Diseases/complications , Thyroid Diseases/epidemiology , Diabetes Mellitus/epidemiology , Hypertension/epidemiology
10.
Stress Health ; : e3386, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411360

ABSTRACT

We propose a novel approach for predicting stress severity by measuring sleep phasic heart rate variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated the HRV indices during NCAP, CAP and REM sleep episodes using both the Holter ECG and smart-device PPG signals. We later developed a machine learning model to predict stress severity based only on the smart device data obtained from the participants along with a clinical evaluation of emotion and stress conditions. Sleep phasic HRV indices predict individual stress severity with better performance in CAP or REM sleep than in NCAP. Using the smart device data only, the optimal machine learning-based stress prediction model exhibited accuracy of 80.3 %, sensitivity 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can be accurately evaluated using a smart device and subsequently can be used for stress predication.

11.
Eur J Med Chem ; 268: 116227, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387335

ABSTRACT

Hypoxia-inducible factor-2 (HIF-2) serves as the pivotal transcription factor in cellular responses to low oxygen levels, particularly concerning the regulation of erythropoietin (EPO) production. A docking-based virtual screening on crystal structures of HIF-2α inhibitors unexpectedly identified 3-phenyl-5-methyl-isoxazole-4-carboxamide derivative v19 as a hit of HIF-2α agonist. Further structural optimizations of compound v19 led to the discovery of a series of HIF-2α agonists with novel scaffolds. The most promising compounds 12g and 14d exhibited potent HIF-2α agonistic activities in vitro with EC50 values of 2.29 µM and 1.78 µM, respectively. Molecular dynamics simulations have revealed their capacity to allosterically enhance HIF-2 dimerization, which shed light on their mechanism of action. Moreover, compound 14d demonstrated a favorable pharmacokinetic (PK) profile, boasting an impressive oral bioavailability value of 68.71 %. These findings strongly suggest that compound 14d is an auspicious lead compound for the treatment of renal anemia.


Subject(s)
Anemia , Basic Helix-Loop-Helix Transcription Factors , Humans , Transcription Factors/metabolism , Gene Expression Regulation , Oxygen , Hypoxia-Inducible Factor 1, alpha Subunit
12.
Drug Discov Today ; 29(1): 103854, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070704

ABSTRACT

Phosphatidylinositol-3 kinase (PI3K) ß, a subtype of class I PI3Ks, has an essential role in PTEN-deficient tumors and links to thrombosis, male fertility, and Fragile X syndrome. PI3Kß-specific targeting therapy could be an efficacious treatment for diseases highly dependent on PI3Kß, while mitigating the severe toxicity of pan-PI3K inhibitors. Achieving selectivity can be accomplished through three primary strategies, namely, binding to the induced lipophilic pocket, targeting the unique amino acid residue of PI3Kß, or using atropisomerism to lock conformation. In this review, we focus on advances in the development of these ß-isoform-selective PI3K inhibitors, providing potential guidance for the further development of novel clinical candidates.


Subject(s)
Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors , Male , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Molecular Conformation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry
13.
Acta Pharmacol Sin ; 45(2): 238-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803138

ABSTRACT

The γ isoform of Class I PI3Ks (PI3Kγ) is primarily found in leukocytes and is essential for the function of myeloid cells, as it regulates the migration, differentiation, and activation of myeloid-lineage immune cells. Thus, PI3Kγ has been identified as a promising drug target for the treatment of inflammation, autoimmune disease, and immuno-oncology. Due to the high incidence of serious adverse events (AEs) associated with PI3K inhibitors, in the development of PI3Kγ inhibitors, isoform selectivity was deemed crucial. In this review, an overview of the development of PI3Kγ selective inhibitors in the past years is provided. The isoform selectivity of related drugs was achieved by different strategies, including inducing a specificity pocket by a propeller-shape structure, targeting steric differences in the solvent channel, and modulating the conformation of the Asp-Phe-Gly DFG motif, which have been demonstrated feasible by several successful cases. The insights in this manuscript may provide a potential direction for rational drug design and accelerate the discovery of PI3Kγ selective inhibitors.


Subject(s)
Autoimmune Diseases , Phosphatidylinositol 3-Kinases , Humans , Phosphoinositide-3 Kinase Inhibitors/chemistry , Autoimmune Diseases/drug therapy , Protein Isoforms , Inflammation/drug therapy
14.
Front Immunol ; 14: 1291117, 2023.
Article in English | MEDLINE | ID: mdl-38077373

ABSTRACT

The tumor microenvironment, particularly the immune microenvironment, plays an indispensable role in the malignant progression and metastasis of gastric cancer (GC). As our understanding of the GC microenvironment continues to evolve, we are gaining deeper insights into the biological mechanisms at the single-cell level. This, in turn, has offered fresh perspectives on GC therapy. Encouragingly, there are various monotherapy and combination therapies in use, such as immune checkpoint inhibitors, adoptive cell transfer therapy, chimeric antigen receptor T cell therapy, antibody-drug conjugates, and cancer vaccines. In this paper, we review the current research progress regarding the GC microenvironment and summarize promising immunotherapy research and targeted therapies.


Subject(s)
Immunoconjugates , Stomach Neoplasms , Humans , Stomach Neoplasms/therapy , Immunotherapy , Immunotherapy, Adoptive , Tumor Microenvironment
15.
Gut ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38050079

ABSTRACT

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

16.
Cell Commun Signal ; 21(1): 365, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129863

ABSTRACT

Hyperglycaemia-induced endothelial dysfunction is a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy. STING, which is a newly discovered regulator of innate immunity, has also been reported to play an important role in various metabolic diseases. However, the role of STING in diabetes-induced endothelial cell dysfunction is unknown. In this study, we established a diabetic macroangiopathy mouse model by streptozotocin (STZ) injection combined with high-fat diet (HFD) feeding and a glucotoxicity cell model in high glucose (HG)-treated rat aortic endothelial cells (RAECs). We found that STING expression was specifically increased in the endothelial cells of diabetic arteries, as well as in HG-treated RAECs. Moreover, genetic deletion of STING significantly ameliorated diabetes-induced endothelial cell dysfunction and apoptosis in vivo. Likewise, STING inhibition by C-176 reversed HG-induced migration dysfunction and apoptosis in RAECs, whereas STING activation by DMXAA resulted in migration dysfunction and apoptosis. Mechanistically, hyperglycaemia-induced oxidative stress promoted endothelial mitochondrial dysfunction and mtDNA release, which subsequently activated the cGAS-STING system and the cGAS-STING-dependent IRF3/NF-kB pathway, ultimately resulting in inflammation and apoptosis. In conclusion, our study identified a novel role of STING in diabetes-induced aortic endothelial cell injury and suggested that STING inhibition was a potential new therapeutic strategy for the treatment of diabetic macroangiopathy. Video Abstract.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Hyperglycemia , Mice , Rats , Animals , Endothelial Cells/metabolism , Signal Transduction , Hyperglycemia/complications , Nucleotidyltransferases/metabolism , Diabetes Complications/metabolism
17.
Huan Jing Ke Xue ; 44(11): 5986-5996, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973083

ABSTRACT

The characteristics and main factors of causes of haze in Zhoukou in January 2022 were analyzed. Six air pollutants, water-soluble ions, elements, OC, EC, and other parameters in fine particulate matter were monitored and analyzed using a set of online high-time-resolution instruments in an urban area. The results showed that the secondary inorganic aerosols(SNA), carbonaceous aerosols(CA, including organic carbon OC and inorganic carbon EC), and reconstructed crustal materials(CM, such as Al2O3, SiO2, CaO, and Fe2O3, etc.) were the three main components, accounting for 61.3%, 24.3%, and 9.72% in PM2.5, respectively. The concentrations of SNA, CA, CM, and SOA were increased, accompanied with higher AQI. The sulfur oxidation rate(SOR) and nitrogen oxidation rate(NOR) in January were 0.53 and 0.46, respectively. The growth rates[µg·(m3·h)] of sulfate and nitrate were 0.027(-5.89-9.47, range) and 0.051(-23.1-12.4), respectively. During the haze period, the growth rates of sulfate and nitrate were 0.13 µg·(m3·h)-1and 0.24 µg·(m3·h)-1, which were 4.8 and 4.7 times higher than the average value of January, respectively. Although the sulfur oxidation rate was greater than the nitrogen oxidation rate, the growth rate of nitrate was approximately 1.8 times that of sulfate owing to the difference in the concentration of gaseous precursors and the influence of relative humidity. The growth rates of nitrate in SNA were significantly higher than those of sulfate on heavily polluted days. The values of SOR, NOR, and concentrations of SNA and SOA during higher AQI and humidity periods were higher than those in lower AQI and humidity periods. The Ox(NO2+O3) decreased with the increase in relative humidity. The SOA was higher at nighttime, increasing faster with the humidity than that in daytime. Under the situation of lower temperature, higher humidity, and lower wind speed, the emission of gaseous precursors of SNA requires further attention in Zhoukou in winter. Advanced control strategies of emissions of SO2 and NO2, such as mobile sources and coal-burning sources, could reduce the peak of haze in winter efficiently.

18.
Aging (Albany NY) ; 15(22): 13384-13410, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38015723

ABSTRACT

A ketogenic diet (KD) and ß-hydroxybutyrate (ßOHB) have been widely reported as effective therapies for metabolic diseases. ß-Hydroxybutyrate dehydrogenase 1 (BDH1) is the rate-limiting enzyme in ketone metabolism. In this study, we examined the BDH1-mediated ßOHB metabolic pathway in the pathogenesis of diabetic kidney disease (DKD). We found that BDH1 is downregulated in the kidneys in DKD mouse models, patients with diabetes, and high glucose- or palmitic acid-induced human renal tubular epithelial (HK-2) cells. BDH1 overexpression or ßOHB treatment protects HK-2 cells from glucotoxicity and lipotoxicity by inhibiting reactive oxygen species overproduction. Mechanistically, BDH1-mediated ßOHB metabolism activates NRF2 by enhancing the metabolic flux of ßOHB-acetoacetate-succinate-fumarate. Moreover, in vivo studies showed that adeno-associated virus 9-mediated BDH1 renal expression successfully reverses fibrosis, inflammation, and apoptosis in the kidneys of C57 BKS db/db mice. Either ßOHB supplementation or KD feeding could elevate the renal expression of BDH1 and reverse the progression of DKD. Our results revealed a BDH1-mediated molecular mechanism in the pathogenesis of DKD and identified BDH1 as a potential therapeutic target for DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Humans , Mice , 3-Hydroxybutyric Acid/pharmacology , Antioxidants/therapeutic use , Diabetic Nephropathies/metabolism , Kidney/pathology , NF-E2-Related Factor 2/genetics , Hydroxybutyrate Dehydrogenase/metabolism
19.
Medicine (Baltimore) ; 102(46): e35887, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986389

ABSTRACT

Traditional Chinese medicine suggests that Ginseng and Astragalus Decoction (GAD) may effectively treat postmenopausal osteoporosis (PMO). However, the exact mechanism of action for GAD remains unclear. This study aims to utilize network pharmacology and molecular docking technology to explore the potential mechanism of GAD in treating PMO. The main chemical components of GAD were identified by consulting literature and traditional Chinese medicine systems pharmacology database. GeneCards and online mendelian inheritance in man were used to identify PMO disease targets, and Cytoscape 3.8.2 software was used to construct a herb-disease-gene-target network. The intersection of drug targets and disease targets was introduced into the search tool for the retrieval of interacting genes platform to construct a protein-protein interaction network. Additionally, we further conducted gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses, followed by molecular docking between active ingredients and core protein targets. We have identified 59 potential targets related to the treatment of PMO by GAD, along with 33 effective components. Quercetin and kaempferol are the compounds with higher degree. In the protein-protein interaction network, IL6, AKT1, and IL1B are proteins with high degree. The enrichment analysis of gene ontology and KEEG revealed that biological processes involved in treating PMO with GAD mainly include response to hormones, positive regulation of phosphorylation, and regulation of protein homodimerization activity. The signal pathways primarily include Pathways in cancer, PI3K-Akt signaling pathway, and AGE-RAGE signaling pathway. Molecular docking results indicate that kaempferol and quercetin have a high affinity for IL6, AKT1, and IL1B. Our research predicts that IL6, AKT1, and IL1B are highly likely to be potential targets for treating PMO with GAD. PI3K/AKT pathway and AGE-ARGE pathway may play an important role in PMO.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Osteoporosis, Postmenopausal , Panax , Humans , Female , Molecular Docking Simulation , Kaempferols , Network Pharmacology , Interleukin-6 , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
20.
Cardiovasc Diabetol ; 22(1): 237, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660030

ABSTRACT

Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Vascular Diseases , Humans , Endothelial Cells , Diabetes Mellitus/diagnosis , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...