Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 87(24): e0155221, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34586903

ABSTRACT

Silicate mineral weathering (dissolution) plays important roles in soil formation and global biogeochemical cycling. In this study, a combination of genomics, transcriptomics, and genetics was used to identify the molecular basis of mineral weathering activity and acid tolerance in Pseudomonas azotoformans F77. Biotite was chosen as a silicate mineral to investigate mineral weathering. The genome of strain F77 was sequenced, and the genes significantly upregulated when grown in the presence of biotite included mineral weathering-related genes associated with gluconic acid metabolism, flagellar assembly, and pilus biosynthesis and acid tolerance-related genes associated with neutralizing component production, reducing power, and proton efflux. The biotite-weathering behaviors of strain F77 and its mutants that were created by deleting the tkt, tal, and gntP genes, which are involved in gluconic acid metabolism, and the potF, nuoF, and gdtO genes, which are involved in acid tolerance, were determined. The Fe and Al concentrations in the strain F77-inoculated medium increased 2.2- to 13.7-fold compared to the controls. The cell numbers of strain F77 increased over time, while the pH values in the medium ranged from 3.75 to 3.90 between 20 and 36 h of incubation. The release of Al and Fe was significantly reduced in the F77 Δtal, F77 ΔgntP, F77 ΔpotF, and F77 ΔnuoF mutants. Bacterial growth was significantly reduced in the presence of biotite in the F77 ΔpotF and F77 ΔnuoF mutants. Our results demonstrated the acid tolerance of strain F77 and suggested that multiple genes and metabolic pathways in strain F77 are involved in biotite weathering and acid tolerance during the mineral weathering process. IMPORTANCE Acid production and tolerance play important roles in effective and persistent mineral weathering in bacteria, although the molecular mechanisms governing acid production and acid tolerance in bacteria have not been fully elucidated. In this study, the molecular mechanisms underlying biotite (as a silicate mineral) weathering (dissolution) and acid tolerance of P. azotoformans F77 were characterized using genomics, transcriptomics, and genetics analyses. Our results showed that the genes and metabolic pathways for gluconic acid metabolism, flagellar assembly, and pilus biosynthesis may play important roles in mineral weathering by strain F77. Notably, the genes associated with neutralizing component production, reducing power, and proton efflux may be related to acid tolerance in strain F77. The expression of these acid production- and acid tolerance-related genes was observed to be increased by biotite in strain F77. Our findings may help to elucidate the molecular mechanisms governing mineral weathering and, especially, acid tolerance in mineral-weathering bacteria.


Subject(s)
Minerals/metabolism , Pseudomonas , Silicates/metabolism , Genomics , Phenotype , Protons , Pseudomonas/genetics , Pseudomonas/metabolism , Transcriptome
2.
Environ Pollut ; 268(Pt A): 115850, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33143980

ABSTRACT

Metal-resistant bacteria can reduce Cd accumulation in plants, but mechanisms underlying this effect are poorly understood. In this study, a highly effective Cd-resistant WRS8 strain was obtained from the rhizoshere soil of Triticum aestivum L. Yangmai-13 and identified as Pseudomonas taiwanensis based on 16S rRNA gene sequence analysis. Strain WRS8 was investigated for its effects on Cd availability and wheat tissue Cd contents and the related mechanisms using a hydroponic culture experiment. In strain WRS8-inoculated solution, the Cd concentration reduced and the pH and cell-adsorbed Cd increased with time. Strain WRS8 increased the wheat root and above-ground tissue dry weights by 11-36% compared to the controls. In strain WRS8-inoculated wheat plants, the Cd contents of the roots and above-ground tissues decreased by 78-85% and 88-94% and the Cd bioconcentration and translocation factors decreased by 78-85% and 46-58% at days 3 and 10, respectively, compared with the controls. The root surface-adsorbed Cd contents increased by 99-121% in the WRS8 strain-inoculated wheat plants at days 3 and 10 compared to the controls. Furthermore, strain WRS8 colonized the wheat root surfaces and interiors and reduced the expression levels of the LCT1 and HMA2 genes involved in Cd accumulation and transport in wheat roots by 46% and 30%, respectively, compared to the controls. In the Cd-contaminated soils, strain WRS8 significantly reduced the available Cd content by 20-24% and increased the pH compared to the controls. These findings showed the important role of strain WRS8 in reducing solution and soil Cd availability and suggested that strain WRS8 reduced the wheat tissue Cd accumulation by increasing root surface Cd adsorption and decreasing wheat root Cd uptake and transport-related gene expression and may provide a new and effective wheat rhizobacteria-enhanced approach for reducing wheat Cd uptake in Cd-polluted environments.


Subject(s)
Cadmium , Soil Pollutants , Adsorption , Cadmium/analysis , Gene Expression , Pseudomonas , RNA, Ribosomal, 16S , Soil , Soil Pollutants/analysis , Triticum
3.
Appl Environ Microbiol ; 86(7)2020 03 18.
Article in English | MEDLINE | ID: mdl-31953343

ABSTRACT

In this study, the mineral-weathering bacterium Pseudomonas azotoformans F77, which was isolated from the soil of a debris flow area, was evaluated for its weathering activity under direct contact with biotite or without contact. Then, biotite-weathering behaviors of strain F77, mutants that had been created by deleting the gcd and adh genes (which are involved in gluconic acid metabolism and pilus formation, respectively), and the double mutant F77ΔgcdΔadh were compared. The relative gene expression levels of F77 and its mutants F77Δgcd and F77Δadh were also analyzed in the presence of biotite. Direct contact with biotite increased Fe and Al release from the mineral in the presence of F77. All strains had similar abilities to release Fe and Al from the mineral except for F77Δgcd and F77Δadh Mobilized Fe and Al concentrations were decreased by up to 72, 26, and 87% in the presence of F77Δgcd, F77Δadh, and F77ΔgcdΔadh, respectively, compared to levels observed in the presence of F77 during the mineral-weathering process. Gluconic acid production was decreased for F77Δgcd and F77ΔgcdΔadh, while decreased cell attachment on the mineral surface was observed for F77Δadh, compared to findings for F77. The F77 genes involved in pilus formation and gluconic acid metabolism showed increased expression levels in the presence of biotite. The results of this study showed important roles for the genes involved in gluconic acid metabolism and pilus formation in mineral weathering by F77 and demonstrated the distinctive effect of these genes on mineral weathering by F77.IMPORTANCE Bacteria play important roles in mineral weathering and soil formation, although the molecular mechanisms underlying the interactions between bacteria and silicate minerals are poorly understood. In this study, the interactions between biotite and the highly effective mineral-weathering bacterium P. azotoformans F77 were characterized. Our results showed that the genes involved in gluconic acid metabolism and pilus formation play important roles in mineral weathering by F77. The presence of biotite could promote the expression of these genes in F77, and a distinctive effect of these genes on mineral weathering by F77 was observed in this study. Our results provide new knowledge and promote better understanding regarding the interaction between silicate minerals and mineral-weathering bacteria, as well as the molecular mechanisms involved in these processes.


Subject(s)
Aluminum Silicates/metabolism , Ferrous Compounds/metabolism , Minerals/metabolism , Pseudomonas/metabolism , Soil Microbiology
4.
Environ Pollut ; 259: 113832, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918131

ABSTRACT

In this study, an arsenic (As)-resistant facultative endophytic bacterial strain, F2, was isolated from the root of Oryza sativa Longliangyou Huazhan and identified as Serratia liquefaciens according to 16S rRNA gene sequence analysis. Strain F2 was characterized for i) its impacts on As immobilization in solution and rice tissue As accumulation, and ii) the mechanisms involved for different levels of As-pollution in soils. In strain F2-inoculated culture medium, the concentration of As decreased, while the pH, cell growth, and cell-immobilized As significantly increased over time. Grain As content reduced by between 23 and 36% in strain F2-inoculated rice plants in comparison to the control. Available As content decreased by between 28 and 52%, but unavailable As content increased by between 27 and 46% in the strain F2-inoculated soil when compared with the controls. Moreover, the strain decreased the As translocation factor by between 34 and 46%, but increased the As concentration by between 24 and 70% in Fe plaque on the rice root surfaces in comparison to the controls. These results suggested that strain F2 decreased the rice grain As uptake by i) decreasing available As in soil, ii) increasing rice root surface As adsorption, and iii) decreasing As translocation from the roots to grains. Our findings may provide a new rice-derived facultative endophytic bacteria-assisted approach for decreasing the As uptake to rice grains in As-polluted soils.


Subject(s)
Arsenic , Oryza , Serratia liquefaciens , Soil Pollutants , Edible Grain , Plant Roots , RNA, Ribosomal, 16S , Soil
5.
World J Microbiol Biotechnol ; 35(1): 2, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30536084

ABSTRACT

Microorganisms play important role in mineral weathering. However, little is known about rock-associated mineral-dissolving bacteria. In this study, 129 bacterial isolates were obtained from the less and more weathered mica schist surfaces and the adjacent soil and characterized for mineral dissolving activity, population, and the linkage of rock weathering level and distribution of the bacteria. Among the 129 isolates, 112 isolates could dissolve biotite. The relative abundance of the highly effective Fe solubilizers was significantly higher on the more altered rock surface (89.6%) than in the soil (51.2%) and on the less altered rock surface (22.5%), while the relative abundance of the highly effective Si solubilizers was significantly higher in the soil (65.9%) than on the more (41.7%) and less (12.5%) altered rock surfaces. Furthermore, 17.5-42.5%, 87.5%, and 60.9-90.2% of the highly effective acid- and siderophore-producing isolates were obtained in the less and more weathered rocks and the soil, respectively. The mineral-dissolving bacteria belonged to 18 genera and Burkholderia, Bacillus, and Paenibacillus were the dominant and highly effective mineral-dissolving bacteria. Phylogenetic analysis found 2, 9, and 5 bacterial species in the highly effective mineral-dissolving bacteria on the less and more altered rock surfaces and in the soil, respectively. The results showed the abundant and diverse mineral-dissolving bacterial populations on the more weathered rock surfaces. The results also suggested distinct mineral-dissolving activities and mechanisms of the bacteria and highlighted the possibility for the development of bacterial inocula for plant nutrition improvement in silicate mineral-rich soils.


Subject(s)
Aluminum Silicates , Bacteria/classification , Bacteria/isolation & purification , Biota , Minerals/metabolism , Soil Microbiology , Bacteria/metabolism , Phylogeny
6.
Environ Pollut ; 242(Pt B): 1488-1499, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30144722

ABSTRACT

In this study, the molecular mechanisms involved in Ralstonia eutropha Q2-8-induced increased biomass and reduced cadmium (Cd) and arsenic (As) uptake in wheat plants (Triticum aestivum cv. Yangmai 16) were investigated in growth chambers. Strain Q2-8 significantly increased plant biomass (22-75%) without and with Cd (5 µM) + As (10 µM) stress and reduced plant above-ground tissue Cd (37%) and As (34%) contents compared to those in the controls. Strain Q2-8 significantly increased the proportions of Cd and As in wheat root cell walls. Under Cd and As stress, 109 root proteins were differentially expressed among which those involved in metabolisms, stress and defence, and energy were dominant in the presence of strain Q2-8. Furthermore, energy-, defence-, and cell wall biosynthesis-related proteins were found to be up-regulated. Notably, differentially expressed cell wall biosynthesis-related proteins in roots were only found in bacteria-inoculated plants under Cd and As stress. The results suggest that strain Q2-8 can alleviate Cd and As toxicity to wheat plant seedlings and reduce above-ground tissue Cd and As uptake by increasing the efficiency of root energy metabolism, defence, and cell wall biosynthesis under Cd and As stress.


Subject(s)
Arsenic/metabolism , Cadmium/metabolism , Cupriavidus necator , Plant Roots/microbiology , Triticum/metabolism , Triticum/microbiology , Biological Transport , Biomass , Cell Wall/metabolism , Plant Components, Aerial/growth & development , Plant Components, Aerial/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/growth & development
7.
Environ Pollut ; 241: 529-539, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29883954

ABSTRACT

This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg-1 of Cd + 40 mg kg-1 of As and 2 mg kg-1 of Cd + 60 mg kg-1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH4+concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12-32%) and As (9-29%) uptake and available Cd (15-28%) and As (22-38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH4+ concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils.


Subject(s)
Bacillaceae/metabolism , Comamonadaceae/metabolism , Metals/metabolism , Ralstonia/metabolism , Soil Pollutants/metabolism , Triticum/metabolism , Ammonium Compounds/metabolism , Arsenic/metabolism , Biodegradation, Environmental , Cadmium/metabolism , Gene Expression , Hydrogen-Ion Concentration , Soil/chemistry
8.
J Hazard Mater ; 353: 280-289, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29677530

ABSTRACT

Two Cd-immobilizing and polyamine-producing bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were characterized for their effects on Cd immobilization, pH, and polyamine production in the solution and the rapeseed biomass and Cd uptake of Brassica napus Qinyou-10 in Cd-contaminated soil. These strains significantly increased pH and reduced water-soluble Cd concentration (25-76%) compared to the controls. Furthermore, strain CL-1 produced more polyamine (71-192%) in the solution than strain X30. Cell surface absorbed Cd content was increased by 23-56% in the presence of strain CL-1 compared to strain X30. The strains significantly increased the rapeseed biomass (12-32%), pH, polyamine content (70-244%), and relative abundance (21-49%) of arginine decarboxylase-producing bacteria (ADPB) of the rhizosphere soils but decreased DTPA-extractable Cd content and rapeseed Cd uptake compared to the controls. Notably, strain CL-1 had higher ability to reduce the rapeseed Cd and DTPA-extractable Cd contents and increase the abundance of ADPB than strain X30. Our results showed the distinct impact of these strains on the rapeseed Cd uptake and available Cd content and suggested that these strains reduced the available Cd and rapeseed Cd uptake by increasing the cell adsorption of Cd, abundance of ADPB, polyamine production, and pH in the rhizosphere soils.


Subject(s)
Bacillus thuringiensis/metabolism , Brassica rapa/metabolism , Cadmium/metabolism , Polyamines/metabolism , Serratia liquefaciens/metabolism , Soil Pollutants/metabolism , Bacterial Proteins/metabolism , Biomass , Brassica rapa/growth & development , Carboxy-Lyases/metabolism , Hydrogen-Ion Concentration , Rhizosphere
9.
Ecotoxicol Environ Saf ; 148: 269-274, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29069614

ABSTRACT

A Cd-resistant and immobilizing Bacillus megaterium H3 was characterized for its impact on the biomass and quality and heavy metal uptake of edible tissues of two vegetables (Brassica campestris L. var. Aijiaohuang and Brassica rapa L. var. Shanghaiqing) grown in heavy metal-polluted soil. The impact of strain H3 on the soil quality was also evaluated. The increase in the edible tissue biomass and the contents of soluble proteins and vitamin C of the vegetables inoculated with strain H3 ranged from 18% to 33%, 17% to 31%, and 15% to 19%, respectively, compared with the controls. Strain H3 significantly decreased the edible tissue Cd and Pb contents of the two greens (41-80%), DTPA-extractable Cd content (35-47%) of the rhizosphere soils, and Cd and Pb translocation factors (25-56%) of the greens compared with the controls. Moreover, strain H3 significantly increased the organic matter content (17-21%) and invertase activity (13-14%) of the rhizosphere soils compared with the controls. Our results demonstrated the increased edible tissue biomass and quality, decreased Cd and Pb uptake of the edible tissues, and improved soil quality in the presence of strain H3. The results also suggested an effective bacterial-enhanced technique for decreased metal uptake of greens and improved vegetable and soil qualities in the metal-contaminated soils.


Subject(s)
Bacillus megaterium/growth & development , Brassica/growth & development , Cadmium/analysis , Soil Pollutants/analysis , Soil/standards , Vegetables/growth & development , Bacillus megaterium/drug effects , Biomass , Brassica/metabolism , Cadmium/metabolism , Lead/metabolism , Lead/toxicity , Rhizosphere , Soil/chemistry , Soil Microbiology/standards , Soil Pollutants/metabolism , Vegetables/metabolism
10.
Environ Sci Pollut Res Int ; 24(2): 1416-1423, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27783244

ABSTRACT

A hydroponic culture experiment was performed to investigate the effects of endophytic Bacillus megaterium H3 on the plant biomass, Cd accumulation and tolerance of hybrid pennisetum, and the mechanisms involved in the different levels of Cd-contaminated aquatic environments. Strain H3 significantly increased the plant growth (ranging from 13 to 71 %) and total Cd uptake (ranging from 41 to 160 %) but decreased Cd translocation factors of hybrid pennisetum treated with 0-20 µM Cd compared with the controls. Furthermore, most of Cd (71-77 %) was accumulated in the roots of the bacterial-inoculated hybrid pennisetum. Notably, strain H3 could significantly increase the production of oxalic and propanedioic acids (ranging from 18 to 188 %) but decrease the production of phytochelatins of hybrid pennisetum compared to the controls under different levels of Cd stress. The live bacterial-induced increase in organic acid production and decrease in phytochelatins production by hybrid pennisetum might be responsible for the increased plant growth, root Cd accumulation, and Cd toxicity alleviation of the plant under different levels of Cd stress. The results highlight that hybrid pennisetum plus endophytic B. megaterium H3 may be utilized for biomass production and Cd phytostabilization of the plant in the different levels of Cd-contaminated aquatic environments.


Subject(s)
Bacillus megaterium , Cadmium/toxicity , Pennisetum/drug effects , Water Pollutants, Chemical/toxicity , Agricultural Inoculants , Biomass , Cadmium/chemistry , Hydroponics , Pennisetum/growth & development , Phytochelatins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Water Pollutants, Chemical/chemistry
11.
Ecotoxicol Environ Saf ; 138: 56-63, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28011421

ABSTRACT

Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils.


Subject(s)
Bacillus megaterium/metabolism , Cadmium/metabolism , Metals, Heavy/metabolism , Oryza/metabolism , Rhizobium/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Cadmium/analysis , Edible Grain/chemistry , Metals, Heavy/analysis , Plant Roots/metabolism , Rhizosphere , Soil/chemistry , Soil Pollutants/analysis
12.
Genome Announc ; 4(5)2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27609930

ABSTRACT

Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium.

13.
Int J Syst Evol Microbiol ; 66(11): 4645-4649, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27514529

ABSTRACT

A Gram-stain-positive, strictly aerobic strain, H6T, was isolated from a soil sample of lead-cadmium tailing in Qixia district, Nanjing (China). Cells of the strain are rod-shaped and colonies on LB agar are red. Strain H6T has subpolar and polar flagella and the optimal condition for growth is 30 °C, with 1 % (w/v) NaCl and at pH 7.0. Based on the 16S rRNA gene sequences, phylogenetic analysis showed that strain H6T was closely related to the genus Saccharibacillus, and the closest relatives were Saccharibacillus deserti WLJ055T (99.0 % 16S rRNA gene sequence similarity), Saccharibacillus kuerlensis HR1T (97.0 %) and Saccharibacillus sacchari GR21T (96.4 %). The DNA-DNA relatedness value between strain H6T and S. deserti WLJ055T was 55.0 %. The major polar lipids of strain H6T were diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid and three unknown glycolipids. The DNA G+C content was 58.4 mol% and MK-7 was the major isoprenoid quinone. The major fatty acids were anteiso-C15 : 0 and C16 : 0. meso-Diaminopimelic acid was detected in the peptidoglycan. Based on the phylogenetic, biochemical and chemotaxonomic data, strain H6T represents a novel species of the genus Saccharibacillus, for which the name Saccharibacillus qingshengii sp. nov., is proposed. The type strain is H6T (=CCTCC AB 2016001T=JCM 31172T).


Subject(s)
Bacillales/classification , Cadmium , Lead , Phylogeny , Soil Microbiology , Bacillales/genetics , Bacillales/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Glycolipids/chemistry , Mining , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Appl Environ Microbiol ; 82(14): 4090-4099, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27129959

ABSTRACT

UNLABELLED: Bacteria play important roles in mineral weathering, soil formation, and element cycling. However, little is known about the interaction between silicate minerals and rhizobia. In this study, Rhizobium yantingense H66 (a novel mineral-weathering rhizobium) and Rhizobium etli CFN42 were compared with respect to potash feldspar weathering, mineral surface adsorption, and metabolic activity during the mineral weathering process. Strain H66 showed significantly higher Si, Al, and K mobilization from the mineral and higher ratios of cell numbers on the mineral surface to total cell numbers than strain CFN42. Although the two strains produced gluconic acid, strain H66 also produced acetic, malic, and succinic acids during mineral weathering in low- and high-glucose media. Notably, higher Si, Al, and K releases, higher ratios of cell numbers on the mineral surface to total cell numbers, and a higher production of organic acids by strain H66 were observed in the low-glucose medium than in the high-glucose medium. Scanning electron microscope analyses of the mineral surfaces and redundancy analysis showed stronger positive correlations between the mineral surface cell adsorption and mineral weathering, indicated by the dissolved Al and K concentrations. The results showed that the two rhizobia behaved differently with respect to mineral weathering. The results suggested that Rhizobium yantingense H66 promoted potash feldspar weathering through increased adsorption of cells to the mineral surface and through differences in glucose metabolism at low and high nutrient concentrations, especially at low nutrient concentrations. IMPORTANCE: This study reported the potash feldspar weathering, the cell adsorption capacity of the mineral surfaces, and the metabolic differences between the novel mineral-weathering Rhizobium yantingense H66 and Rhizobium etli CFN42 under different nutritional conditions. The results showed that Rhizobium yantingense H66 had a greater ability to weather the mineral in low- and high-glucose media, especially in the low-glucose medium. Furthermore, Rhizobium yantingense H66 promoted mineral weathering through the increased adsorption of cells to the mineral surface and through increased organic acid production. Our results allow us to better comprehend the roles of different rhizobia in silicate mineral weathering, element cycling, and soil formation in various soil environments, providing more insight into the geomicrobial contributions of rhizobia to these processes.


Subject(s)
Minerals/metabolism , Rhizobium/isolation & purification , Rhizobium/metabolism , Silicates/metabolism , Bacterial Adhesion , Bacterial Load , Carboxylic Acids/metabolism , Microscopy, Electron, Scanning , Rhizobium/physiology
15.
J Hazard Mater ; 312: 123-131, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27017398

ABSTRACT

A plant growth-promoting Neorhizobium huautlense T1-17 was evaluated for its immobilization of Cd and Pb in solution. Meanwhile, the impacts of T1-17, immobilizers (vermiculite and peat) and their combination on the fruit biomass and heavy metal accumulation of hot pepper were characterized. T1-17 could significantly reduced water-soluble Cd and Pb in solution. T1-17, vermiculite+T1-17, peat, and peat+T1-17 significantly increased the fruit biomass (ranging from 45% to 269%) and decreased the fruit Cd (ranging from 66% to 87%) and Pb (ranging from 30% to 56%) contents and water-soluble Cd and Pb (ranging from 23% to 59%) contents of the rhizosphere soils compared to the controls. T1-17+vermiculite or peat had higher ability to increase the fruit biomass than T1-17 or vermiculite or peat. Furthermore, T1-17+peat had higher ability to reduce the water-soluble Cd and Pb contents of the rhizosphere soil and the fruit Pb uptake of hot pepper. The results showed that T1-17 and the immobilizers alleviated the heavy metal toxicity and decreased the fruit heavy metal uptake of hot pepper. The results also showed the synergistic effects of T1-17 and the immobilizers on the growth and Cd and Pb accumulation of hot pepper.


Subject(s)
Capsicum/growth & development , Metals, Heavy/metabolism , Rhizobiaceae/physiology , Soil Pollutants/metabolism , Aluminum Silicates , Cadmium , Capsicum/metabolism , Fruit , Lead , Rhizosphere , Soil
16.
Ecotoxicol Environ Saf ; 124: 163-168, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26517728

ABSTRACT

Endophytic bacterial strain K3-2 was isolated from the roots of Sorghum sudanense (an bioenergy plant) grown in a Cu mine wasteland soils and characterized. Strain K3-2 was identified as Enterobacter sp. based on 16S rRNA gene sequence analysis. Strain K3-2 exhibited Cu resistance and produced 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), siderophores, and arginine decarboxylase. Pot experiments showed that strain K3-2 significantly increased the dry weight and root Cu accumulation of Sorghum sudanense grown in the Cu mine wasteland soils. Furthermore, increase in total Cu uptake (ranging from 49% to 95%) of the bacterial inoculated-Sorghum sudanense was observed compared to the control. Notably, most of Cu (83-86%) was accumulated in the roots of Sorghum sudanense. Furthermore, inoculation with strain K3-2 was found to significantly increase Cu bioconcentration factors and the proportions of IAA- and siderophore-producing bacteria in the root interiors and rhizosphere soils of Sorghum sudanense compared with the control. Significant decrease in the available Cu content was also observed in the rhizosphere soils of the bacterial-inoculated Sorghum sudanense. The results suggest that the endophytic bacterial strain K3-2 may be exploited for promoting Sorghum sudanense biomass production and Cu phytostabilization in the Cu mining wasteland soils.


Subject(s)
Copper/metabolism , Endophytes/physiology , Enterobacter/physiology , Soil Pollutants/metabolism , Sorghum/microbiology , Biodegradation, Environmental , Biomass , Carbon-Carbon Lyases/metabolism , Drug Resistance, Bacterial , Endophytes/isolation & purification , Enterobacter/isolation & purification , Indoleacetic Acids/metabolism , Mining , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Siderophores , Soil , Sorghum/growth & development , Sorghum/metabolism
17.
J Hazard Mater ; 300: 513-521, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26241871

ABSTRACT

In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants.


Subject(s)
Bacillus megaterium/metabolism , Energy Metabolism/drug effects , Manganese/metabolism , Pennisetum/metabolism , Pennisetum/microbiology , Proteome/drug effects , Soil Pollutants/metabolism , Environmental Restoration and Remediation , Hydroponics , Pennisetum/growth & development , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Roots/metabolism
18.
Ecotoxicol Environ Saf ; 120: 369-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26114256

ABSTRACT

Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants.


Subject(s)
Bacteria/genetics , DNA, Bacterial/isolation & purification , Drug Resistance, Bacterial/genetics , Manganese/metabolism , Phytolacca americana/microbiology , RNA, Ribosomal, 16S/isolation & purification , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Biodegradation, Environmental , Carbon-Carbon Lyases/metabolism , DNA, Bacterial/genetics , Indoleacetic Acids/metabolism , Plant Leaves/microbiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Siderophores/metabolism , Soil Microbiology
19.
Int J Syst Evol Microbiol ; 65(7): 2161-2166, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25858246

ABSTRACT

A novel bacterial strain, S1-9(T), was isolated from a lead-zinc tailing in Nanjing, Jiangsu Province, China. Cells of strain S1-9(T) were Gram-stain-negative, ellipsoidal endospore-forming, aerobic rods and motile by means of peritrichous flagella. On the basis of 16S rRNA gene sequence analysis, strain S1-9(T) was shown to belong to the genus Paenibacillus and the closest phylogenetic relatives were Paenibacillus glucanolyticus DSM 5162(T) (96.8% similarity), Paenibacillus lautus NRRL NRS-666(T) (96.5%) and Paenibacillus lactis MB 1871(T) (95.4%). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0 and iso-C16:0. The polar lipid profile contained phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, two unknown phospholipids and two unknown lipids. The total DNA G+C content of strain S1-9(T) was 49.9 mol%. Based on the low levels of DNA-DNA relatedness (ranging from 21.8 to 48.4%) to the type strains of the above species of the genus Paenibacillus and unique phenotypic characteristics, strain S1-9(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus qingshengii sp. nov. is proposed. The type strain is S1-9(T) ( = CCTCC AB 2014290(T) = JCM 30613(T)).


Subject(s)
Mining , Paenibacillus/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Molecular Sequence Data , Nucleic Acid Hybridization , Paenibacillus/genetics , Paenibacillus/isolation & purification , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry , Zinc
20.
World J Microbiol Biotechnol ; 31(5): 747-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25716616

ABSTRACT

The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.


Subject(s)
Rhizobium tropici/classification , Rhizobium tropici/metabolism , Silicates/metabolism , Carboxylic Acids/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Polysaccharides, Bacterial/metabolism , Potassium/metabolism , RNA, Ribosomal, 16S/genetics , Rhizobium tropici/genetics , Rhizobium tropici/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...