Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
MethodsX ; 12: 102756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883585

ABSTRACT

Follicle culture is a process of dividing follicle unit structures from ovaries for continued culture in vitro in an incubator, which simulates the in vivo environment. Alginate gel is the most stable and most convenient 3D material currently used in follicle culture. We performed in vitro follicle culture following the standard operating procedure recommended by the Follicle Handbook and we have summarized our experience and skills in details. Through several experiments, we found only follicles tightly surrounded by theca cells can grow healthily until the preovulatory stage. In addition, the hardness of alginate gel is crucial for constructing the 3D culture system, and selecting appropriate tools can reduce damage to the alginate gel and shorten the time follicles are exposed to room temperature. Our detailed operation improves bioavailability and provides a more natural environment for the entire process of follicular growth.•Alginate gel is still the most suitable 3D material used for in vitro follicle culture.•Follicle integrity and the hardness of alginate gel are the keys for in vitro culture.•Detailed operation steps better protect the follicular microenvironment and improve bioavailability.

2.
Sci Total Environ ; 905: 166954, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37722425

ABSTRACT

Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant that can impair ovarian function, while the underlying mechanism is not fully understood, and effective treatments are lacking. In this study, we established a mouse model of PFOA exposure induced by drinking water and found that PFOA exposure impaired follicle development, increased apoptosis of granulosa cells (GCs), and hindered normal follicular development in a 3D culture system. RNA-seq analysis revealed that PFOA disrupted oxidative phosphorylation in ovaries by impairing the mitochondrial electron transport chain. This resulted in reduced mitochondrial membrane potential and increased mitochondrial reactive oxygen species (mtROS) in isolated GCs or KGN cells. Resveratrol, a mitochondrial nutrient supplement, could improve mitochondrial function and restore normal follicular development by activating FoxO1 through SIRT1/PI3K-AKT pathway. Our results indicate that PFOA exposure impairs mitochondrial function in GCs and affects follicle development. Resveratrol can be a potential therapeutic agent for PFOA-induced ovarian dysfunction.


Subject(s)
Granulosa Cells , Phosphatidylinositol 3-Kinases , Mice , Female , Animals , Resveratrol/metabolism , Resveratrol/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Electron Transport , Granulosa Cells/metabolism
3.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37643613

ABSTRACT

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Subject(s)
Embryo Implantation , Epithelial Cells , Pregnancy , Female , Humans , Animals , Mice , Embryo Implantation/genetics , Embryonic Development , Endometrium/physiology , Cell Differentiation
4.
Mol Reprod Dev ; 90(6): 358-368, 2023 06.
Article in English | MEDLINE | ID: mdl-37392095

ABSTRACT

Meiotic defects in oocytes are the primary reason for decreased female fertility with advanced maternal age. In this study, we revealed that decreased expression of ATP-dependent Lon peptidase 1 (LONP1) in aged oocytes and oocyte-specific depletion of LONP1 disrupt oocyte meiotic progression accompanying with mitochondrial dysfunction. In addition, LONP1 downregulation increased oocyte DNA damage. Moreover, we demonstrated that splicing factor proline and glutamine rich directly interacts with LONP1 and mediate the effect of LONP1 depletion on meiotic progression in oocytes. In summary, our data suggest that decreased expression of LONP1 is involved in advanced maternal age-related meiosis defects and that LONP1 represents a new therapeutic target to improve aged oocyte quality.


Subject(s)
Oocytes , Peptide Hydrolases , Animals , Female , DNA Damage , Meiosis , Oocytes/metabolism , Peptide Hydrolases/metabolism , Mice
5.
J Vis Exp ; (191)2023 01 06.
Article in English | MEDLINE | ID: mdl-36688552

ABSTRACT

Due to the decline in the quantity and quality of oocytes related to age, the fertility of women over 35 years of age has declined sharply. The molecular mechanisms that maintain oocyte quality remain unclear, thus it is difficult to increase the birth rate of women over 35 years old at present. Oocytes contain more mitochondria than any type of cell in the body, and any mitochondrial dysfunction can lead to reduced oocyte quality. In the 1990s, oocyte cytoplasmic transfer resulted in great success in human reproduction but was accompanied by ethical controversies. Autologous mitochondrial transplantation is expected to be a useful technique to increase the quality of oocytes that have decreased due to age. In the present study, we used adipose-derived stem cells from aged mice as a mitochondria donor to increase the quality of oocytes of aged mice. Further development of autologous mitochondrial transfer technology will provide a new and effective treatment for infertility in aged women.


Subject(s)
Mesenchymal Stem Cells , Oocytes , Female , Mice , Animals , Humans , Aged , Adult , Oocytes/metabolism , Mitochondria/metabolism , Fertility , Mesenchymal Stem Cells/metabolism
6.
DNA Cell Biol ; 41(12): 1026-1037, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36394459

ABSTRACT

Oxidative stress leads to ovarian functional decline by inducing granulosa cell (GC) apoptosis. Circular RNA circFoxo3 acts as a critical factor in regulating cell cycle and apoptosis, and cellular senescence in tumor cells. However, function of circFoxo3 is little understood in oxidative stress-induced injury of follicular GCs. In this study, we aimed to illustrate the regulation pattern of circFoxo3 in GCs under oxidative stress. CircFoxo3 was confirmed to be expressed in both human and mouse GCs by amplification with divergent primers and sequencing. In vitro and in vivo ovarian oxidative stress model, the expression of circFoxo3, FOXO3 protein, and its downstream targets were examined by quantitative real-time PCR and Western blotting, respectively. Knockdown of circFoxo3 was performed to evaluate the effects of circFoxo3-mediated GC apoptosis in vitro. RNA pull-down was used to discover the protein that interacted with circFoxo3 so as to illustrate the mechanism of circFoxo3 in GCs. Our results demonstrated that circFoxo3 was significantly upregulated in hydrogen peroxide (H2O2)-treated GCs and a 3-nitropropionic acid (3-NP)-induced mouse model of ovarian oxidative stress. Protein level of transcriptional factor FOXO3 was also remarkably increased in both in vitro and in vivo oxidative stress model, but FOXO3 mRNA expression revealed no significant difference. Knockdown of endogenous circFoxo3 downregulated FOXO3 protein level and blocked H2O2-induced cell apoptosis. CircFoxo3 could pull down high levels of MDM2 protein that induced FOXO3 ubiquitination and degradation. Furthermore, knockdown of MDM2 and circFoxo3 showed remarkably higher level of apoptosis when compared with the knockdown of circFoxo3 alone. Our study suggested that circFoxo3 regulated FOXO3 protein level in GCs by reducing interactions between FOXO3 and MDM2. In conclusion, circFoxo3 was positively associated with FOXO3 protein and jointly played crucial roles in mediating GC apoptosis induced by oxidative stress.


Subject(s)
Hydrogen Peroxide , RNA, Circular , Humans , Mice , Animals , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Hydrogen Peroxide/pharmacology , Apoptosis/genetics , Oxidative Stress/genetics , Granulosa Cells/metabolism
7.
J Vis Exp ; (186)2022 08 23.
Article in English | MEDLINE | ID: mdl-36094263

ABSTRACT

Umbilical cord mesenchymal stem cells (UC-MSCs) are an important cell source for regenerative medicine. UC-MSCs can be isolated from the umbilical cord Wharton's jelly, as well as from the umbilical arteries and umbilical vein. They are known as perivascular stem cells obtained from umbilical arteries (UCA-PSCs), perivascular stem cells obtained from the umbilical vein (UCV-PSCs), and mesenchymal stem cells obtained from Wharton's jelly (WJ-MSCs). UCA-PSCs and UCV-PSCs are pericytes derived from perivascular regions that are progenitors of MSCs. Isolation and culture of the three kinds of cells is an important source for studying stem cell transplantation and repair. The present protocol focuses on the isolation and culture of cells through mechanical separation, adherent culture, and cell crawling out. Through this technique, the three different types of stem cells can be derived. Cell surface markers were detected by flow cytometry. The stem cells were detected for multilineage differentiation potential by adipogenic, osteogenic, and neural-like differentiation, which is consistent with the phenotype of MSCs. This experimental protocol expands the source of UC-MSCs. In addition, the cell isolation method provides a basis for further study of regenerative medicine and other applications.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Cell Differentiation , Cell Separation/methods , Umbilical Cord
8.
J Vis Exp ; (185)2022 07 27.
Article in English | MEDLINE | ID: mdl-35969090

ABSTRACT

Endometrial decidualization is a unique differentiation process of the endometrium, closely related to menstruation and pregnancy. Impairment of decidualization leads to various endometrial disorders, such as infertility, recurrent miscarriage, and preterm birth. The development and use of the endometrial decidualization model in reproductive studies have been a highlight for reproductive researchers for a long time. The mouse has been extensively used in studying reproduction and decidualization. There are three well-established mouse models regarding decidualization, namely natural pregnancy decidualization (NPD), artificial decidualization (AD), and in vitro decidualization (IVD). Among them, AD is considered a reliable model for mouse decidualization, which is easy to implement and close to NPD. This paper focuses on a modified method of the generation and application process of the mouse artificial decidualization model with ovariectomy to avoid ovarian effects, which can obtain highly reproducible results with small within group variances. This method provides a good and reliable animal model for the study of endometrial decidualization.


Subject(s)
Decidua , Premature Birth , Animals , Disease Models, Animal , Endometrium , Female , Humans , Infant, Newborn , Mice , Ovariectomy , Pregnancy , Stromal Cells
9.
BMC Mol Cell Biol ; 23(1): 24, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35761172

ABSTRACT

BACKGROUND: Poor decidualization and abnormal autophagy conditions in the endometria of adenomyosis patients have been reported previously. However, the specific regulatory mechanism of decidualization in adenomyosis and its relationship with autophagy levels have not been clarified. METHODS: Endometrial tissues from adenomyosis patients and uteri from an adenomyosis mouse model were collected for the detection of different expression patterns of KLF4 and autophagy markers (LC3-B/LC3-A and Beclin-1) compared with control groups. Human endometrial stromal cells (hESCs) isolated from adenomyosis and control endometrial tissues were employed to elucidate the biological functions of KLF4 in autophagy and decidualization. Gene expression regulation was examined by quantitative real-time PCR (qRT-PCR), western blotting and luciferase reporter assays. In addition, DNA promoter-protein interactions were examined by chromatin immunoprecipitation (ChIP)/PCR assay and avidin-biotin conjugate DNA precipitation (ABCD) assay. RESULTS: KLF4 expression was decreased in endometrial tissues from adenomyosis patients compared with those from fertile controls, especially in stromal compartments. The opposite results were observed for autophagy marker (LC3-B/LC3-A and Beclin-1) expression. At the same time, KLF4 reversed the poor decidualization of hESCs from adenomyosis patients. In addition, KLF4 could induce hESC decidualization by promoting the autophagy level. Mechanistically, KLF4 bound to a conserved site in the autophagy-related 5 (ATG5) promoter region and promoted ATG5 expression. Similar expression patterns of KLF4 and autophagy markers were detected in adenomyotic mice. CONCLUSIONS: KLF4 overexpression increases the autophagy level of hESCs by transcriptionally promoting ATG5 expression, and abnormally decreased KLF4 in adenomyosis impairs hESC decidualization by repressing autophagy.


Subject(s)
Adenomyosis , Adenomyosis/metabolism , Animals , Autophagy , Beclin-1/metabolism , Decidua/metabolism , Female , Humans , Kruppel-Like Factor 4/metabolism , Mice , Stromal Cells/metabolism
10.
Bioengineered ; 13(4): 10875-10888, 2022 04.
Article in English | MEDLINE | ID: mdl-35485387

ABSTRACT

The purpose of this study was to explore the potential molecular mechanisms of excess homocysteine in relation to autophagic activity in the ovarian tissue of polycystic ovarian syndrome (PCOS) with hyperandrogenism.A PCOS model was constructed using ICR mice. ELISA was used to detect the Hcy levels in the serum and ovarian tissues of PCOS model. The expression level of key enzymes (Methionine synthase and Betaine-homocysteine methyltransferase, MTR and BHMT) in homocysteine metabolism and autophagy-related proteins were detected in ovarian tissues and mouse granulosa cells (mGCs) that were treated with homocysteine, androgen, autophagy inhibitors or BHMT-expressing plasmid by western blot and immunohistochemistry. Electron microscope experiments were used to evaluate autophagosomes in Hcy-treated mGCs. The prenatally androgenized (PNA) PCOS mouse model showed hyperhomocysteinemia and hyperandrogenism. Homocysteine levels displayed a significant increase, while its metabolic enzymes levels were significantly decreased in ovarian tissues of PCOS mice and dihydrotestosterone (DHT)-stimulated mGCs. The LC3II and Beclin1 expression levels were increased and the P62 and p-mTOR levels were decreased in vivo in ovarian tissue from the PCOS mice. The in vitro data were similarly with the in vivo by stimulation of mGCs with DHT or homocysteine. These effects could be diminished by the autophagy inhibitor (MHY1485), androgen receptor antagonists (ARN509) or BHMT-expressing plasmid. Androgen increases homocysteine concentration by downregulating the key enzymes in homocysteine metabolism. And then Hcy promotes GCs autophagy via the mTOR signal pathway.


Subject(s)
Hyperandrogenism , Polycystic Ovary Syndrome , Androgens/metabolism , Androgens/pharmacology , Animals , Autophagy , Female , Granulosa Cells/metabolism , Homocysteine/metabolism , Homocysteine/pharmacology , Humans , Hyperandrogenism/metabolism , Male , Mammals , Mice , Mice, Inbred ICR , Polycystic Ovary Syndrome/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
11.
EBioMedicine ; 75: 103790, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34974310

ABSTRACT

BACKGROUND: Oogenesis is a fundamental process of human reproduction, and mitochondria play crucial roles in oocyte competence. Mitochondrial ATP-dependent Lon protease 1 (LONP1) functions as a critical protein in maintaining mitochondrial and cellular homeostasis in somatic cells. However, the essential role of LONP1 in maintaining mammalian oogenesis is far from elucidated. METHODS: Using conditional oocyte Lonp1-knockout mice, RNA sequencing (RNA-seq) and coimmunoprecipitation/liquid chromatography-mass spectrometry (Co-IP/LC-MS) technology, we analysed the functions of LONP1 in mammalian oogenesis. FINDINGS: Conditional knockout of Lonp1 in mouse oocytes in both the primordial and growing follicle stages impairs follicular development and causes progressive oocyte death, ovarian reserve loss, and infertility. LONP1 directly interacts with apoptosis inducing factor mitochondria-associated 1 (AIFM1), and LONP1 ablation leads to the translocation of AIFM1 from the cytoplasm to the nucleus, causing apoptosis in mouse oocytes. In addition, women with pathogenic variants of LONP1 lack large antral follicles (>10 mm) in the ovaries, are infertile and present premature ovarian insufficiency. INTERPRETATION: We demonstrated the function of LONP1 in regulating oocyte development and survival, and in-depth analysis of LONP1 will be crucial for elucidating the mechanisms underlying premature ovarian insufficiency. FUNDING: This work was supported by grants from the National Key Research and Development Program of China (2018YFC1004701), the National Nature Science Foundation of China (82001629, 81871128, 81571391, 81401166, 82030040), the Jiangsu Province Social Development Project (BE2018602), the Jiangsu Provincial Medical Youth Talent (QNRC2016006), the Youth Program of the Natural Science Foundation of Jiangsu Province (BK20200116) and Jiangsu Province Postdoctoral Research Funding (2021K277B).


Subject(s)
Protease La , ATP-Dependent Proteases/metabolism , Animals , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Mammals/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oocytes , Oogenesis/genetics , Peptide Hydrolases/metabolism , Protease La/metabolism
12.
Biol Reprod ; 105(6): 1443-1457, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34568943

ABSTRACT

The establishment of endometrial receptivity is a prerequisite for successful pregnancy. Women with adenomyosis possess a lower chance of clinical pregnancy after assisted reproductive technology, which is partially due to impaired endometrial receptivity. The establishment of endometrial receptivity requires the participation of multiple processes, and proper endometrial epithelial cell (EEC) proliferation is indispensable. Monoamine oxidase A (MAOA) is a key molecule that regulates neurotransmitter metabolism in the nervous system. In the present study, we demonstrated a novel role for MAOA in the establishment of endometrial receptivity in women with adenomyosis and in an adenomyotic mouse model. Attenuated MAOA impairs endometrial receptivity by promoting inappropriate proliferation of EECs via the downregulation of FOXO1 during the window of implantation. These results revealed that MAOA plays a vital role in endometrial receptivity in female reproduction.


Subject(s)
Adenomyosis/physiopathology , Down-Regulation , Endometrium/physiopathology , Forkhead Box Protein O1/metabolism , Monoamine Oxidase/genetics , Adenomyosis/metabolism , Adult , Animals , Endometrium/metabolism , Female , Humans , Mice , Mice, Inbred ICR , Monoamine Oxidase/metabolism , Young Adult
13.
Stem Cell Res Ther ; 10(1): 179, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31215503

ABSTRACT

BACKGROUND: Disruptions of angiogenesis can have a significant effect on the healing of uterine scars. Human endometrial perivascular cells (CD146+PDGFRß+) function as stem cells in the endometrium. Cysteine-rich angiogenic inducer 61 (CYR61) plays an important role in vascular development. The purpose of this study was to observe the effects of the transplantation of human endometrial perivascular cells (En-PSCs) overexpressing CYR61 on structural and functional regeneration in rat models of partial full-thickness uterine excision. METHODS: We first sorted human En-PSCs from endometrial single-cell suspensions by flow cytometry. Human En-PSCs expressing low or high levels of CYR61 were then generated via transfection with a CYR61-specific small interfering ribonucleic acid (si-CYR61) construct or overexpression plasmid. To establish a rat model of uterine injury, a subset of uterine wall was then resected from each uterine horn in experimental animals. Female rats were randomly assigned to five groups, including a sham-operated group and four repair groups that received either PBS loaded on a collagen scaffold (collagen/PBS), En-PSCs loaded on a collagen scaffold (collagen/En-PSCs), En-PSCs with low CYR61 expression loaded on a collagen scaffold (collagen/si-CYR61 En-PSCs), and En-PSCs overexpressing CYR61 loaded on a collagen scaffold (collagen/ov-CYR61 En-PSCs). These indicated constructs were sutured in the injured uterine area to replace the excised segment. On days 30 and 90 after transplantation, a subset of rats in each group was sacrificed, and uterine tissue was recovered and serially sectioned. Hematoxylin and eosin staining and immunohistochemical staining were then performed. Finally, the remaining rats of each group were mated with fertile male rats on day 90 for a 2-week period. RESULTS: Sorted En-PSCs expressed all recognized markers of mesenchymal stem cells (MSCs), including CD10, CD13, CD44, CD73, CD90, and CD105, and exhibited differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. Compared with En-PSCs and En-PSCs with low CYR61 expression, En-PSCs with elevated CYR61 expression enhanced angiogenesis by in vitro co-culture assays. At day 90 after transplantation, blood vessel density in the collagen/ov-CYR61 En-PSCs group (11.667 ± 1.287) was greater than that in the collagen/En-PSCs group (7.167 ± 0.672) (P < 0.05) and the collagen/si-CYR61 En-PSCs group (3.750 ± 0.906) (P < 0.0001). Pregnancy rates differed among groups, from 40% in the collagen/PBS group to 80% in the collagen/En-PSCs group, 12.5% in the collagen/si-CYR61 En-PSCs group, and 80% in the collagen/ov-CYR61 En-PSCs group. In addition, four embryos were evident in the injured uterine horns of the collagen/ov-CYR61 En-PSCs group, while no embryos were identified in the injured uterine horns of the collagen/PBS group. CONCLUSIONS: The results showed that CYR61 plays an important role in angiogenesis. Collagen/ov-CYR61 En-PSCs promoted endometrial and myometrial regeneration and induced neovascular regeneration in injured rat uteri. The pregnancy rate of rats treated with transplantation of collagen/En-PSCs or collagen/ov-CYR61 En-PSCs was improved. Moreover, the number of embryos implantation on the injured area in uterus was increased after transplantation of collagen/ov-CYR61 En-PSCs.


Subject(s)
Cysteine-Rich Protein 61/metabolism , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/physiology , Regeneration/physiology , Uterus/cytology , Uterus/injuries , Uterus/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Chromatography, Liquid , Collagen/metabolism , Cysteine-Rich Protein 61/genetics , Endometrium/cytology , Endometrium/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fertility/genetics , Fertility/physiology , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Male , Mesenchymal Stem Cells/metabolism , Myometrium/cytology , Myometrium/metabolism , Neovascularization, Physiologic/genetics , Pregnancy , Rats , Regeneration/genetics , Tandem Mass Spectrometry
14.
In Vitro Cell Dev Biol Anim ; 55(4): 302-311, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30820812

ABSTRACT

Premature ovarian failure (POF) is a refractory disease; one of the most important goals of treatment is to improve fertility. In the study, collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells (collagen/UC-MSCs) transplantation in POF mice preserved ovarian function, as supported by increased estrogen (E2) and anti-Mullerian hormone (AMH) levels, increased ovarian volume, and an increased number of antral follicles. Immunohistochemistry results of Ki67 indicated transplantation of collagen/UC-MSCs promoted granulosa cell proliferation, which is crucial to oocyte maturation and follicular development. Additionally, transplantation of collagen/UC-MSCs significantly promoted ovarian angiogenesis with the increased expression of CD31. In general, collagen/UC-MSCs transplantation probably is an effective therapeutic strategy of POF.


Subject(s)
Collagen/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Ovary/physiopathology , Primary Ovarian Insufficiency/physiopathology , Primary Ovarian Insufficiency/therapy , Tissue Scaffolds/chemistry , Umbilical Cord/cytology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Estrous Cycle/drug effects , Female , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Hormones/metabolism , Humans , Infant, Newborn , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Ovary/blood supply , Ovary/drug effects , Ovary/pathology
15.
Mol Reprod Dev ; 86(5): 516-529, 2019 05.
Article in English | MEDLINE | ID: mdl-30779242

ABSTRACT

Female fertility declines dramatically over the age of 35 due to age-related decreases in oocyte quality and quantity. Although mitochondrial transfer promises to be a technology that can improve the quality of such age-impaired oocytes, the ideal mitochondrial donor remains elusive. In the present study, we aimed to identify whether aged adipose-derived stem cells constitute an excellent mitochondrial donor that would improve the quality of aged mouse oocytes. We showed that aging significantly impaired the mitochondrial function in mouse oocytes, but did not significantly affect the mitochondrial function of adipose-derived stem cells. However, the mitochondrial transfer from aged adipose-derived stem cells did not mitigate the poor fertilization and embryonic development rates of aged oocytes.


Subject(s)
Adipocytes/cytology , Cellular Senescence/physiology , Mitochondria/physiology , Oocytes , Stem Cells/cytology , Animals , Cumulus Cells/cytology , Female , Mice , Mice, Inbred C57BL , Oocytes/cytology , Oocytes/physiology
16.
Sci China Life Sci ; 61(12): 1554-1565, 2018 12.
Article in English | MEDLINE | ID: mdl-29546669

ABSTRACT

Premature ovarian failure (POF) is a refractory disease for clinical treatment with the goal of restoring fertility. In this study, umbilical cord mesenchymal stem cells on a collagen scaffold (collagen/UC-MSCs) can activate primordial follicles in vitro via phosphorylation of FOXO3a and FOXO1. Transplantation of collagen/UC-MSCs to the ovaries of POF patients rescued overall ovarian function, evidenced by elevated estradiol concentrations, improved follicular development, and increased number of antral follicles. Successful clinical pregnancy was achieved in women with POF after transplantation of collagen/UC-MSCs or UC-MSCs. In summary, collagen/UC-MSC transplantation may provide an effective treatment for POF.


Subject(s)
Infertility, Female/therapy , Mesenchymal Stem Cell Transplantation , Ovarian Follicle/metabolism , Primary Ovarian Insufficiency/therapy , Wharton Jelly/cytology , Adult , Animals , Collagen/chemistry , Disease Models, Animal , Estradiol/blood , Estradiol/metabolism , Female , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Humans , Mice , Ovarian Follicle/growth & development , Phosphorylation , Pregnancy , Tissue Scaffolds/chemistry , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...