Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(26): 40213-40225, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35119634

ABSTRACT

The Yellow River is an important ecological shelter zone and economic belt in China. However, rapid urbanization and industrialization has produced a fragile ecological environment conditions and unbalanced economic development in the Yellow River Basin (YRB). Ecological protection and high-quality development of the YRB has been China's national strategy since 2019. As the only coastal province with the largest economy and population in the YRB, the sustainable development of Shandong Province is of great importance in the region. This study evaluated the dynamic trend of sustainability levels of the nine cities in Shandong Province in the YRB through emergy analysis. Emergy-based indicators were established and analyzed from 2010 to 2019, taking account of the ecological service emergy (ESE) needed to dilute pollutants and emergy equivalent loss (EEL) on ecosystem quality and human health damage. Results showed that emergy sustainable indicators (ESI) in Tai'an, Heze, Dezhou, and Liaocheng ranged from 1 to 10, which had the potential for sustainable development. The ESI value of Jinan, Jining, Zibo, Dongying, and Binzhou was less than 1, which indicated that these cities were under great ecological pressure. The value of emergy indicators for sustainable development (EISD) of the nine cities all declined from 2010 to 2016, but remained stable from 2017 to 2019. Based on findings from the emergy analysis regarding policy implications and local conditions, the study concludes by providing proposals to improve regional sustainability.


Subject(s)
Ecosystem , Rivers , China , Cities , Conservation of Natural Resources , Humans , Urbanization
2.
Sci Total Environ ; 803: 149993, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34482145

ABSTRACT

The ecological conservation and high-quality development of China's Yellow River Basin is a national strategy proposed in 2019. Under China's goal of achieving a carbon peak by 2030 and carbon neutrality by 2060, clarifying the carbon footprint of each province and the transfer paths of embodied carbon emissions is crucial to the carbon reduction strategy for this region. This paper uses input-output model and multi-regional input-output model to account for the carbon footprint of nine provinces in the Yellow River Basin, and to estimate the amount of embodied carbon transfer between provinces and industrial sectors. Social network analysis is applied to identify the critical industries in the inter-provincial embodied carbon emission transfers from the three major industries. We found that the per capita carbon footprint of the Yellow River Basin decreased by 23.4% in 2017 compared to 2012. Among the sectoral composition of the carbon footprint of each province, "Processing and manufacturing of petroleum, coking, nuclear fuel, and chemical products", "Construction", "Other services", and "Metal processing and metal, non-metallic products" are the four sectors with a higher proportion of emissions. The embodied carbon emission transfer between the provinces in middle and lower reaches of the Yellow River Basin is much higher than that between the upstream provinces. Among carbon emission transfer network of three major industries in nine provinces,the secondary industry in Shaanxi has the highest centrality and is the most critical industry. This study provides a theoretical basis and data support for formulating carbon emission reduction plans in the Yellow River Basin.


Subject(s)
Carbon , Rivers , Carbon/analysis , Carbon Dioxide/analysis , Carbon Footprint , China , Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...