Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793517

ABSTRACT

A series of freeze-thaw cycling tests, as well as cyclic loading and unloading tests, have been conducted on nodular sandstones to investigate the effect of fatigue loading and freeze-thaw cycling on the damage evolution of fractured sandstones based on damage mechanics theory, the microstructure and sandstone pore fractal theory. The results show that the number of freeze-thaw cycles, the cyclic loading level, the pore distribution and the complex program are important factors affecting the damage evolution of rocks. As the number of freeze-thaw cycles rises, the peak strength, modulus of elasticity, modulus of deformation and damping ratio of the sandstone all declined. Additionally, the modulus of elasticity and deformation increase nonlinearly as the cyclic load level rises. With the rate of increase decreasing, while the dissipation energy due to hysteresis increases gradually and at an increasing rate, and the damping ratio as a whole shows a gradual decrease, with a tendency to increase at a later stage. The NRM (Nuclear Magnetic Resonance) demonstrated that the total porosity and micro-pores of the sandstone increased linearly with the number of freeze-thaw cycles and that the micro-porosity was more sensitive to freeze-thaw, gradually shifting towards meso-pores and macro-pores; simultaneously, the SEM (Scanning Electron Microscope) indicated that the more freeze-thaw cycles there are, the more micro-fractures and holes grow and penetrate each other and the more loose the structure is, with an overall nest-like appearance. To explore the mechanical behavior and mechanism of cracked rock in high-altitude and alpine areas, a damage model under the coupling of freeze-thaw-fatigue loading was established based on the loading and unloading response ratio theory and strain equivalence principle.

2.
Materials (Basel) ; 15(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35744384

ABSTRACT

Multiple compression tests on rock-like samples of pre-existing cracks with different geometries were conducted to investigate the strength properties and crack propagation behavior considering multi-crack interactions. The progressive failure process of the specimens was segmented into four categories and seven coalescence modes were identified due to different crack propagation mechanisms. Ultimately, a mechanical model of the multi-crack rock mass was proposed to investigate the gradual fracture and damage evolution traits of the multi-crack rock on the basis of exploring the law of the compression-shear wing crack initiation and propagation. A comparison between theory and experimental results indicated that the peak strength of the specimens with multiple fractures decreased initially and subsequently increased with the increase in the fissure inclination angles; the peak strength of specimens decreased with the increase in the density of fissure distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...