Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(19): 14493-14500, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32951430

ABSTRACT

Blue phosphorescent tetradentate pyridyl-carbolinyl Pt(II) complexes, Pt(ppzOclpy-Me), Pt(ppzOclpy-iPr), and Pt(ppzOclpy-mesi), were purposefully synthesized and investigated with their photophysical and luminescent properties. The complexes, incorporating with carbolinyl moieties, have twisted planar structure. X-ray crystallography revealed that the intraligand N···H-C hydrogen bond reversely turned the twisty pyridyl moiety back into the chelating plane. Computational analyses confirmed that the metal-to-ligand charge-transfer transition character appears in the singlet manifolds. However, the ligand-centered transitions rule in their triplet states, which accounts for the phosphorescent emission. The Pt(II) complexes emit blue light with peak wavelengths (λmax) of 461-481 nm and moderate photoluminescent quantum yields (Φ = 34-46% in dichloromethane and Φ = 44-52% in films). The electroluminescent devices were fabricated by solution processes, giving blue emissions peaking at around 470 nm.

2.
ACS Appl Mater Interfaces ; 12(30): 33960-33967, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32628441

ABSTRACT

In this report, a solution-processable cohost system incorporating N,N'-di(naphtalene-1-yl)-N,N'-diphenylbenzidine (NPB) and Csp3-annulated phenylquinoline derivatives, including spiro[indeno[1,2-b]quinoline-11,8'-indolo[3,2,1-de]acridine] (IAIQ), 10-phenyl-10H-spiro[acridine-9,11'-indeno[1,2-b]quinoline] (PAIQ) and 3,3'-(11H-indeno[1,2-b]quinoline-11,11-diyl)bis(N-phenyl-N-(m-tolyl)aniline) (m-TPA-DPIQ), is developed for highly efficient saturated red phosphorescent organic light emitting diodes (OLEDs). IAIQ, PAIQ, and m-TPA-DPIQ, designed with the increase of molecular flexibility, are systematically investigated. Solution-processable devices based on the efficient phosphorescent emitter bis[2-(3,5-dimethylphenyl)isoquinolinato](2,8-dimethyl-4,6-nonanedionato)Iridium [Ir(mpiq)2divm] are successfully fabricated, and give electroluminescent peaks at 634-636 nm with Commission Internationale de L'Eclairage coordinates of (0.70, 0.30). Under optimized conditions, the devices incorporating IAIQ, PAIQ, and m-TPA-DPIQ exhibit high external quantum efficiency with the maximum value at 25.1%, 23.4%, and 23.3%, respectively, and all exceeding 18% at the luminance of 1000 cd/m2. In application, the supersaturated red devices with excellent performance could facilitate the development of wet-made displays. The newly developed Csp3-annulated host materials with their excitonic properties also showoff the tactic to construct cohost system for high-quality phosphorescent OLEDs.

3.
J Phys Chem Lett ; 9(9): 2285-2292, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29664638

ABSTRACT

The structural and photophysical properties of tetradentate Pt(ppzOppz), Pt(ppzOpopy), Pt(ppzOczpy), and Pt(czpyOczpy) have been experimentally and theoretically explored. Single-crystal diffraction measurements provided accurate structural information. Electrochemical and photophysical characterizations revealed internal electronic energy levels in ground and excited states. (Time-dependent) Density functional theory calculation revealed electron distributions in transition processes of S0 → S1 and S1 → T1 → S0. Electronic transition study indicated that Pt(ppzOppz) demonstrated mixed MLCT/LC states and Pt(czpyOczpy) showed MLCT-dominated states in S1 and T1. Both Pt(ppzOpopy) and Pt(ppzOczpy) presented strong delocalized spin transition (DST) during intersystem crossing. Upon frame modification of Pt(ppzOczpy), we found that their S1 and T1 can be independently manipulated. These blue emitters showed a tunable and narrow emission band (the narrowest fwhm was 19 nm) with luminescence efficiency as high as 86%. The findings of the DST transition mode in the neutral Pt(II) complexes provide guidance for rational design of novel phosphorescent materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...